Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (10): 1882-1891.doi: 10.3864/j.issn.0578-1752.2015.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional Analysis of COI1 Genes in Oilseed Rape (Brassica napus L.)

WANG Wen-jing, YANG Xiao-chuan, DING Yong-qiang, YIN Guo-ying, MA Hao-ran, ZHANG Jie, SHI Xiao-yu, ZHANG Ding-yu, LI Jia-na, ZHANG Hong-bo   

  1. College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400716
  • Received:2014-12-04 Online:2015-05-16 Published:2015-05-16

Abstract: 【Objective】 CORONATINE INSENSITIVE 1 (COI1) is a critical component of jasmonate (JA) receptor complex. The objective of this study is to investigate the spatial expression pattern and regulatory roles of COI1 gene in oilseed rape(Brassica napus), a staple oil crop in the world. 【Method】 The COI1 genes in oilseed rape(B. napus) and its parental species B. rapa and B. oleracea were analyzed based on the genomic data. The spatial transcription pattern of COI1 in oilseed rape was analyzed by RT-PCR with specific primers according to the conserved region of COI1 gene homologs. Then, a cDNA fragment of the conserved region was cloned into vector pTRV2 of the tobacco rattle virus-based VIGS (virus-induced gene silencing) system. And, VIGS techniques were applied to silence COI1 genes in oilseed rape. The rape plants shown to have COI1 genes silenced were used to investigate male fertility and aphid resistance. 【Result】 Analysis of the genomic data of B. rapa, B. oleracea, and B. napus revealed that the genomes of B. rapa and B. oleracea contained 7 highly homologous COI1 genes, which could be classified into 4 subgroups, i.e., COI1a, COI1b.1, COI1b.2, and COI1c, while 8 COI1 genes were presented in the genome of B. napus. Transcriptional assay revealed that the expression of COI1 in oilseed rape is tissue specific. A 505bp fragment of the conserved region of COI1 was introduced into the VIGS vector pTRV2 to develop COI1-silenced plants via VIGS techniques. Twenty-five plants with the transcripts of COI1 down-regulated by over 70% were identified by transcriptional analyses, from which the ten plants with the lowest expression level of COI1 were selected to investigate male fertility and aphid resistance. The results showed that the fertility of COI1-silenced plants was extremely impaired, with no seeds in their siliques. Furthermore, the filaments of COI1-silenced plants were shorter than those of control plants, and over 80% pollens of the COI1-silenced plants were irregular in shape. Aphid resistance assay showed that aphids grew and reproduced much faster on the COI1-silenced plants than on the control plants cultured under the same condition. 【Conclusion】 This study revealed that the expression of COI1 gene in oilseed rape is tissue specific. VIGS-induced silencing of COI1 greatly impaired the male fertility and decreased the aphid resistance of oilseed rape. This work has provided an important start point to dissect the mechanism of JA signaling in oilseed rape.

Key words: Brassica napus L., COI1 gene, jasmonate, male sterility, aphid resistance

[1]    Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280(5366): 1091-1094.
[2]    Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J G. COI1 links jasmonate signaling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. The Plant Journal, 2002, 32(4): 457-466.
[3]    Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. The Plant Cell, 2009, 21(8): 2220-2236.
[4]    Feys B, Benedetti C E, Penfold C N, Turner J G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell, 1994, 6(5): 751-759.
[5]    Chini A, Fonseca S, Fernández G, Adie B, Chico J M, Lorenzo O, García-Casado G, López-Vidriero I, Lozano F M, Ponce M R, Micol J L, Solano R. The JAZ family of repressors is the missing link in jasmonate signaling. Nature, 2007, 448(7154): 666-671.
[6]    Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling. Nature, 2007, 448(7154): 661-665.
[7]    Zhang H B, Bokowiec M T, Rushton P J, Han S C, Timko M P. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Molecular Plant, 2012, 5(1): 73-84.
[8]    Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D. GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate- regulated plant defense and fertility in Arabidopsis. Molecular Plant-Microbe Interact, 2005, 18(12): 1285-1295.
[9]    Li L, Zhao Y, McCaig B C, Wingerd B A, Wang J, Whalon M E, Pichersky E, Howe G A. The tomato homolog of CORONATINE- INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development, The Plant Cell, 2004, 16(1): 126-143.
[10]   Paschold A, Halitschke R, Baldwin I T. Co(i)-ordinating defenses: NaCOI1 mediates herbivore- induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. The Plant Journal, 2007, 51(1): 79-91.
[11]   Wang W, Liu G, Timko M P, Zhang H. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco. Journal of Experimental Botany, 2014, 65(8): 2147-2160.
[12]   Ye M, Luo S M, Xie J F, Li Y F, Xu T, Liu Y, Song Y Y, Zhu-Salzman K, Zeng R S. Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE, 2012, 7: e36214.
[13]   Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 1990, 2(4): 279-289.
[14]   van der Krol A R, Mur L A, Beld M, Mol J N, Stuitje A R. Flavonoid genes in Petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell, 1990, 2(4): 291-299.
[15]   Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
[16]   Lu R, Malcuit I, Moffett P, Ruiz M T, Peart J, Wu A J, Rathjen J P, Bendahmane A, Day L, Baulcombe D C. High throughput virus- induced gene silencing implicates heat shock protein 90 in plant disease resistance. The EMBO Journal, 2003, 22(21): 5690-5699.
[17]   Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S P. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121(4): 567-577.
[18]   Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby I E, Sundar S, Jarmolowski A, Shirasu K, Lacomme C. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiology, 2005, 138(4): 2155-2164.
[19]   Scofield S R, Huang L, Brandt A S, Gill B S. Development of a virus-induced gene silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 2005, 138(4): 2165-2173.
[20]   Peart J R, Mestre P, Lu R, Malcuit I, Baulcombe D C. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current Biology, 2005, 15(10): 968-973.
[21]   González-Lamothe R, Tsitsigiannis D I, Ludwig A A, Panicot M, Shirasu K, Jones J D. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. The Plant Cell, 2006, 18(4): 1067-1083.
[22]   Senthil-Kumar M, Govind G, Kang L, Mysore K S, Udayakumar M. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta, 2007, 225(3): 523-539.
[23]   Saedler R, Baldwin T. Virus-induced gene silencing of jasmonate- induced direct defences, nicotine and trypsin proteinase- inhibitors in Nicotiana attenuate, Journal of Experimental Botany, 2004, 55(395): 151-157.
[24]   Ratcliff F, Martin-Hernandez A M, Baulcombe D C. Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 2001, 25(2): 237-245.
[25]   Liu Y, Nakayama N, Schiff M, Litt A, Irish V F, Dinesh-Kumar S P. Virus induced gene silencing of a DEFlClENS ortholog in Nicotiana benthamiana. Plant Molecular Biology, 2004, 54(5): 70-71.
[27]   Wang X, Wang H, Wang J, Sun R. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43 (10): 1035-1039.
[28]   Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communication, 2014, 5: 3930.
[29]   Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345(6199): 950-953.
[30]   Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell, 2011, 23(5): 1795-1814.
[31]   To K Y, Wang C K. Molecular breeding of flower color// Teixeira da Silva J A. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. London: Global Science Books, 2006: 300-310.
[32]   狄曙玲, 刘列钊, 柴友荣, 杨光伟. 类黄酮物质及查尔酮合酶在油菜性状改良中的作用. 安徽农学通报, 2007, 13(18): 21-24.
Di S L, Liu L Z, Chai Y R, Yang G W. Roles of chalcone synthase in trait improvement of oilseed rape. Anhui Agricultural Science Bulletin, 2007, 13(18): 21-24. (in Chinese)
[33]   Farmer E E, Ryan C A. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences of the USA, 1990, 87(19): 7713-7716.
[34]   Gundlach H, Müller M J, Kutchan T M, Zenk M H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences of the USA, 1992, 89(6): 2389-2393.
[35]   McConn M, Creelman R A, Bell E, Mullet J E, Browse J. Jasmonate is essential for insect defense Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 1997, 94(10): 5473-5477.
[36]   Mewis I, Appel H M, Hom A, Raina R, Schultz J C. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology, 2005, 138(2): 1149-1162.
[37]   Dammann C, Rojo E, SanchezSegano J J. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. The Plant Journal, 1997, 11(4): 773-782.
[38]   Gruden K, Strukelj B, Ravnikar M, Poljsak-Prijate M, Mavric I, Brzin J, Pungercar J, Kregar I. Potato cysteine proteinase inhibitor gene family:Molecular cloning, characterization and immuno cytochemical localization studies. Plant Molecular Biology, 1997, 34(2): 317-323.
[39]   Rakwal R, Kumar Agrawal G, Jwa N S. Characterization of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: Tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene, 2001, 24(263): 189-198.
[40]   Hedin P A. Naturally Occurring Pest Bioregulators. Washington, DC: American Chemical Society, 1991: 167-197.
[41]   Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology, 2004, 136(1): 2641-2651.
[1] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[2] HENG YanFang,LI Jian,WANG Zheng,CHEN Zhuo,HE Hang,DENG XingWang,MA LiGeng. Cloning, Expression and Functional Analysis of a Male Fertility Gene ThMs1 in Bread Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4727-4737.
[3] ZHANG HuanHuan,CUI GuiMei,WANG ChangBiao,WANG XiaoQing,HAO YaoShan,DU JianZhong,WANG YiXue,SUN Yi. Breeding and Characteristics of a New Male Sterile Line of Maize, Jinyu1A [J]. Scientia Agricultura Sinica, 2020, 53(21): 4322-4332.
[4] XUE YaDong,YANG Lu,YANG HuiLi,LI Bing,LIN YaNan,ZHANG HuaiSheng,GUO ZhanYong,TANG JiHua. Comparative Transcriptome Analysis Among the Three Line of Cytoplasmic Male Sterility in Maize [J]. Scientia Agricultura Sinica, 2019, 52(8): 1308-1323.
[5] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[6] WANG XueDe. Overview of the Study and Application of Cytoplasmic Male Sterility in Cotton [J]. Scientia Agricultura Sinica, 2019, 52(8): 1341-1354.
[7] XiaoXia CUI, HongMei SHU, Lu JIANG, XiaoLan HE, YuanYong GONG, WanChao NI, ShuQiao GUO. Identification of Pathogens Causing Brown Spot and the Role of MeJA in Disease Resistance in Stevia rebaudiana [J]. Scientia Agricultura Sinica, 2018, 51(18): 3520-3530.
[8] LIU ZiHan, SHI XiaoYi, YAN PengJiao, DUAN Yang, GENG XingXia, YE JiaLi, LI Sha, YANG XueTong, ZHANG GaoMing, JIA YuLin, ZHANG LingLi, SONG XiYue. Tapetal Programmed Cell Death, Antioxidant Response and Oxidative Stress in Wheat Anthers Associated with D2-type Cytoplasmic Male-sterility [J]. Scientia Agricultura Sinica, 2017, 50(21): 4071-4086.
[9] AN Xiu-hong, LI En-mao, LI Min, LI Zhuang, ZHANG Xiu-de, CHENG Cun-gang. The Gene Expression Assays and Protein Interactions of MdJAZ1 in Apple [J]. Scientia Agricultura Sinica, 2016, 49(13): 2642-2650.
[10] ZHANG Wen-hui, YAN Wei, CHEN Zhu-feng, XIE Gang, LU Jia-wei, LIU Dong-feng, TANG Xiao-yan. Genetic Analysis and Mapping of the Rice Male Sterile Mutant oss125 [J]. Scientia Agricultura Sinica, 2015, 48(4): 621-629.
[11] ZHANG Peng-Fei, SONG Yu-Long, ZHANG Gai-Sheng, ZHAO Xin-Liang, BA Qing-Song, LIU Hong-Zhan, ZHU Wan-Wan, LI Zhi-Kuan, WANG Jun-Wei, NIU Na. Relationship Between Microspore Abortion of CMS Lines Associated with Nutrient Metabolism Disorder in Tapetal of Anther in Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2014, 47(9): 1670-1680.
[12] . Proteome Analysis of Cytoplasmic Male Sterility and Its Maintaince in JA-CMS Cotton [J]. Scientia Agricultura Sinica, 2014, 47(20): 3929-3940.
[13] LIU Chen, MA Ning, FU Nan, LI Xin, GUO Shuang, SHEN Huo-Lin. Cloning and Expression Analysis of Fertility-Related Genes for the Genic Male Sterile Line in Pepper (Capsicum annuum L.) [J]. Scientia Agricultura Sinica, 2014, 47(16): 3264-3276.
[14] YAN Zhi-Qiang-1, XU Hai-1, MA Zuo-Bin-1, 2 , GAO Dong-Chang-1, XU Zheng-Jin-1. Differential Response of Floret Opening to Exo-Methyl Jasmonate Between Subsp.Indica and Subsp. Japonica in Rice [J]. Scientia Agricultura Sinica, 2014, 47(13): 2529-2540.
[15] ZHANG Bao-Lei, ZHANG Wei-Dong, GAO Qing-Rong, WANG Mao-Ting, LI Nan-Nan, ZHANG Yan-Yu, WANG Hui-Na, GAO Jian-Hua, ZHAO Lan-Fei, RU Zhen-Gang. Genetic Analysis on Male Sterility of Thermo-Photo-Sensitive Male Sterile Line BNS in Wheat [J]. Scientia Agricultura Sinica, 2013, 46(8): 1533-1542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!