Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2280-2287.doi: 10.3864/j.issn.0578-1752.2012.11.018

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Comparison and Analysis of Genetic Parameters of Growth Traits of Qinghai Fine-Wool Sheep Estimated by Different Models

 WANG  Peng-Yu, GUAN  Que-Zha-Xi, QI  Quan-Qing, DE  Mao, ZHANG  Yan-Jun, WANG  Rui-Jun, ZHANG  Wen-Guang, LI  Jin-Quan   

  1. 1.内蒙古农业大学动物科学学院,呼和浩特 010018
    2.青海省三角城种羊场,青海刚察  812300
  • Received:2011-10-17 Online:2012-06-01 Published:2012-02-23

Abstract: 【Objective】The effects of different animal models on estimation of genetic parameters of growth traits of Qinghai Fine-Wool sheep were investigated. 【Method】 The genetic parameters for growth traits of Qinghai Fine-Wool sheep were estimated by average information restricted maximum likelihood (AIREML) with different animal models, and the differences between different animal models were tested by likelihood ratio test. Eight models were constructed on the basis of different random effects in models. All models contain the fixed effects, direct genetic effects, and residual effects. The random effects include individual permanent environmental effects, maternal genetic effects, and maternal permanent environmental effects.【Result】The direct heritabilities were 0.1696-0.3781, 0.2520-0.3291, 0.2244-0.3506, and 0.2205-0.3981 for birth weight (BWT), weaning weight (WWT), yearling weight (YWT), hogget weight (HWT), respectively, and the maternal heritability were 0.0001-0.0900, 0.0002-0.0759, 0.0001-0.0918, and 0.0000-0.0006 for BWT, WWT, YWT, HWT, respectively. Compared with model 1, both model 3 and model 8 were significant (P<0.01) for BWT, and model 3 was significant (P<0.01) for WWT, other models were not significant (P>0.05) for YWT and HWT by likelihood ratio test. Compared with model 2, model 8 was significant (P<0.01) for BWT, model 6 was significant (P<0.01) for YWT, both model 5 and model 8 were significant (P<0.01) for HWT, by likelihood ratio test. Compared with model 3, models 5, 6, 7, 8 were not significant (P>0.05) for all growth traits by likelihood ratio test. Compared with model 4, both models 5 and model 8 were significant (P<0.01) for BWT; model 6 was significant (P<0.01) for YWT, by likelihood ratio test.【Conclusion】Model 3 is fit for birth weight, weaning weight, and model 1 is fit for yearling weight, hogget weight. The maternal effects are important determinants of estimating the genetic parameters of birth weight and weaning weight. The direct heritabilities are 0.1995, 0.2552, 0.3438, and 0.2205 for BWT, WWT , YWT, HWT , respectively.

Key words: Qinghai Fine-Wool sheep, growth traits, genetic parameters, animal models, heritabilities

[1]白俊艳, 李金泉, 贾小平, 张  勤, 道尔吉. 母体遗传效应对绒山羊生产性状遗传参数估计的影响. 遗传, 2006, 28(9): 1083-1086.

Bai J Y, Li J Q, Jia X P, Zhang Q, Daoerji. Influence of maternal genetic effect on genetic parameter estimatesof production traits of cashmere goat. Hereditas, 2006, 28(9): 1083-1086. (in Chinese)

[2]Varona L, Sorensen D, Thompson R. Analysis of litter size and average litter weight in pigs using a recursive model. Genetics, 2007, 177(3): 1791-1799. 

[3]张  健, 卢  金, 杨润清. 基于随即回归模型估计奶牛产奶量的遗传参数. 东北农业大学学报, 2007, 38(6): 805-808.

Zhang J, Lu J, Yang R Q. Estimation of genetic parameters for milk yield of cattle by random regression model. Journal of Northeast Agricultural University, 2007, 38(6): 805-808. (in Chinese)

[4]Borg R C, Notter D R, Kott R W. Phenotypic and genetic associations between lamb growth traits and adult ewe body weights in western range sheep. Journal of Animal Science, 2009, 87(11): 3506-3514.

[5]王立贤, 张  沅, 潘君乾. 绵羊生长性状母本效应方差组分、遗传参数估计的研究. 畜牧兽医学报, 1993, 24(4): 289-293.

Wang L X, Zhang Y, Pan J Q. Studyofestimatingvariance components andgenetic parameters of maternal influenced sheep growth trait. Acta Yeterinaria et Zootechnics Sinica, 1993, 24(4): 289-293. (in Chinese)

[6]Safari E, Fogarty N M, Gilmour A R, Atkins K D, Mortimer S I, Swan A A, Brien F D, GreeffJ C, van der Werf J H J. Genetic correlations among and between wool, growth and reproduction traits in Merino sheep. Journal of Animal Breeding and Genetics, 2007, 124(2): 65-72.

[7]刘永新, 刘海金. 不同模型估计牙鲆家系间生长性状遗传参数的比较分析. 渔业科学进展, 2010, 31(1): 40-47.

Liu Y X, Liu H J. Comparison and analysis of genetic parameters of growth traits estimatedby different models for Japanese flounder families. Progress in Fishery Sciences, 2010, 31(1): 40-47. (in Chinese)

[8]Lee J W, Waldron D F, van Vleck L D. Parameter estimates for number of lambs born at different ages and for 18-monthbody weight of Rambouillet sheep. Journal of Animal Science, 2000, 78: 2086-2090.

[9]白俊艳, 李金泉, 道尔吉, 张  勤. 用不同模型估计绒山羊早期生长性状遗传参数的比较. 遗传学报, 2004, 31(6): 578-581.

Bai J Y, Li J Q, Daoerji, Zhang Q. Comparison of different models for estimating genetic parameters of early growth traits in Cashmere goat. Acta Genetica Sinica, 2004, 31(6): 578-581. (in Chinese)

[10]Meyer K. WOMBAT-A program for mixed model analyses by restricted maximum likelihood. user notes. Version 1.0. Animal Genetics and Breeding Unit, University of New England: Armidale, 2006.

[11]Lôbo A M B O, Lôbo R N B, PaivaS R, de OliveiraS M P, Facó O. Genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population. Genetics and Molecular Biology, 2009, 32(4): 761-770.

[12]Zhang C Y, Yang L G, Shen Z. Variance components and genetic parameters for weight and size at birth in the Boer goat. Livestock Science, 2008, 115(1): 73-79.

[13]Hanford K J, Snowder G D, van Vleck L D. Models with nuclear, cytoplasmic, and environmental effects for production traits of Columbia sheep. Journal of Animal Science, 2003, 81(8): 1926-1932.

[14]Eler J P, van Vleck L D, Ferraz J B S, Lobo R B. Estimation of variances due to direct and maternal effects for growth traits of Nelore cattle. Journal of Animal Science, 1995, 73(11): 3253-3258.

[15]Al-Shorepy S A. Estimates of genetic parameters for direct and maternal effects on birth weight of local sheep in United Arab Emirates. Small Ruminant Research, 2001, 39(3): 219-224.

[16]Hatcher S, Atkins K D, Safari E. Lamb survival in Australian merino sheep: a genetic analysis. Journal of Animal Science, 2010, 88(10): 3198-3205.

[17]Hossein-Zadeh N G, Ardalam M. Comparison of different models for the estimation of genetic parameters of body weight traits in Moghani sheep. Agricultural and Food Science, 2010, 19: 207-213.

[18]Van Wyk J B, Fair M D, Cloete S W P. Revised models and genetic parameter estimates for production and reproduction traits in the Elsenburg Dormer sheepstud. South African Journal of Animal Science, 2003, 33(4): 213-222.

[19]Cloete S W P, MisztalI, Olivier J J. Genetic parameters and trends for lamb survival and birth weight in a merino flock divergently selected for multiple rearing ability. Journal of Animal Science, 2009, 87(7): 2196-2208.

[20]Di J, Zhang Y, Tian K C, Lazate, Liu J F, Xu X M, Zhang Y J, Zhang T H. Estimation of (co) variance components and genetic parameters for growth and wool traits of Chinese superfine merino sheep with the use of a multi-trait animal model. Livestock Science, 2011, 138(1): 278-288.

[21]Hanford K J, van Vleck L D, Snowder G D. Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Targhee sheep. Journal of Animal Science, 2003, 81(12): 630-640.

[22]梅  花, 荣威恒. 敖汉细毛羊主要数量性状遗传参数的估计. 黑龙江动物繁殖, 2010, 5(18): 22-25.

Mei H, Rong W H. Estimation of the genetic parameters for main quantitative traits in Aohanfine wool Sheep. Heilongjiang Journal of Animal Reproduction, 2010, 5(18): 22-25. (in Chinese)

[23]黄锡霞. 超细型细毛羊优化育种规划的研究[D]. 北京: 中国农业大学, 2005.

Huang X X. Studieson optimization of breeding schemefor superfine merino sheep[D]. Beiiing: China Agricultural University, 2005. (in Chinese)

[24]Gowane G R, Chopra A, Prince L L L, Paswan C, Arora A L. Estimates of (co) variance components and genetic parameters for body weights and first greasy fleece weight in Bharat merino sheep. Animal, 2010, 4(3): 425-431.

[25]Groenewald P G J, Olivier J J, Olivier W J. Heritability estimates for merino sheep obtained from a national progeny test. South African Journal of Animal Science, 1999, 29(3): 174-178.

[26]Maniatis N, Pollott G E. The impact of data structure on genetic (co) variance components of early growth in sheep, estimated using an animal model with maternal effects. Journal of Animal Science, 2003, 81(1): 101-108.
[1] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[2] YIN Min,LIU ShaoWen,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song. Differences in Yield and Growth Traits of Different Japonica Varieties in the Double Cropping Late Season in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2020, 53(5): 890-903.
[3] AN QingMing,ZHOU HuiTong,WU ZhenYang,LUO YuZhu,Jon G. Hickford. Polymorphisms of ADIPOQ Gene and Their Association with Growth and Carcass Traits in Sheep [J]. Scientia Agricultura Sinica, 2019, 52(10): 1807-1817.
[4] ZHANG JianBo, YUAN Chao, YUE YaoJing, GUO Jian, NIU ChunE, WANG XiJun, WANG LiJuan, Lü HuiQin, YANG BoHui. Comparison and Analysis of Genetic Parameters Estimation of Early Growth Traits of Alpine Merino Sheep by Different Animal Models [J]. Scientia Agricultura Sinica, 2018, 51(6): 1202-1212.
[5] LI XueWu, LIU Yan, WANG RuiJun, WANG ZhiYing, NA Qing, LI HongWei, WANG ZhenYu, XU BingBing,SU Rui, ZHANG YanJun, LIU ZhiHong, LI JinQuan . Genetic Parameter Estimation of Cashmere Yield and Body Weight at Different Staple Types of Inner Mongolian Cashmere Goats [J]. Scientia Agricultura Sinica, 2018, 51(12): 2410-2417.
[6] REN XiaoLi, LIU AoXing, LI Xiang, ZHANG Xu, WANG YaChun, SHAO HuaiFeng, QIN ChunHua, WANG Yu, WEN Wan, ZHANG ShengLi. Genetic Parameters Estimation of Test Day Milk Yield in Holstein Heifers in Ningxia Using a Random Regression Test-Day Model [J]. Scientia Agricultura Sinica, 2017, 50(10): 1885-1892.
[7] MA Xiao-meng, XUAN Jun-li,WANG Hui-hua,YUAN Ze-hu, WU Ming-ming, ZHU Cai-ye, LIU Rui-zao, WEI Cai-hong, ZHAO Fu-ping, DU Li-xin, ZHANG Li. Association of the RIPK2 Gene Genetic Variation with Ujumqin Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2016, 49(7): 1391-1407.
[8] SONG Tao-wei, CAI Hui-fen, LUO Wei-xing, LIU Ruo-yu, ZHANG Yi-yu, SUN Yan-yan, LIU Bin. Association of GHSR and GHRL Gene Genetic Variation with Growth Traits in Two Guizhou Goat Breeds [J]. Scientia Agricultura Sinica, 2015, 48(1): 140-153.
[9] REN Xiao-Li-1, ZHANG Xu-1, WANG Ya-Chun-1, WU Hong-Jun-2, LIU Ai-Rong-3, ZHANG Yi-1, WANG Dong-Sheng-2, CUI Jiu-Hui-3, DOU Tong-Xi-2, YUAN Peng-2, JIANG Li-Xin-2, ZHOU Lei-2, ZHAO Jian-2. Genetic Parameter Estimation for Body Measurements and Weight at Birth in Sanhe Cattle [J]. Scientia Agricultura Sinica, 2013, 46(23): 5020-5025.
[10] LIU Yuan-Feng-1, WANG Gui-Zhi-1, LI Qiu-Mei-2, CAO Hai-Yang-1, PI Xiu-Shuang-1, WANG Jian-Min-1. The Effect of LEP and STAT5a Genes on Milk and Growth Traits of Laoshan Dairy Goat [J]. Scientia Agricultura Sinica, 2013, 46(18): 3946-3954.
[11] HAN Xue-lei,YANG Hua-wei,WANG Wei-min,YIN Qin,JIANG Teng-fei,LIU Bang. Genetic Analysis of Polygene Markers in Porcine Genes IGF2, MC4R, JHDM1A and TEF-1 [J]. Scientia Agricultura Sinica, 2011, 44(8): 1694-1701 .
[12] SONG Cheng-Yi, ZHAO Qin, GAO Bo, WANG Xiao-Yan, WU Han, ZHOU Hui-Yun, JING Rong-Bin, MAO Jiu-De. Polymorphism Analysis of POU1F1 Promoter Regionand It’s Association with Growth Traits [J]. Scientia Agricultura Sinica, 2011, 44(24): 5067-5072.
[13]
FANG Mei-xia ; XU Hai-ping ; XIE Liang ; LIANG Wei-tao ; LAI Zhe-ying ; ZHANG De-xiang ; NIE Qing-hua ; ZHANG Xi-quan
. The Genetic Effects of 5′ Flanking Region of GHRL Gene on Chicken Growth and Carcass Traits [J]. Scientia Agricultura Sinica, 2011, 44(12): 2567-2574 .
[14] . Genetic Effect of three Loci related with Growth and Carcass Traits in Swine
[J]. Scientia Agricultura Sinica, 2009, 42(2): 742-747 .
[15] ,,,,,. Correlation of Polymorphisms of POU1F1 Gene and Growth Traits in Qinchuan Cattle and Its Hybrid Cattle [J]. Scientia Agricultura Sinica, 2005, 38(12): 2520-2525 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!