Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3837-3856.doi: 10.3864/j.issn.0578-1752.2025.19.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Impact of Post-Anthesis Heat Stress on Nitrogen Use Efficiency and Yield Components in Wheat

LEI BiXin(), YU YongBo, ZHANG MingTong, CUI GuoJi, HONG JiaWen, HU Tao, YOU AiXin, ZHANG WenJing, MA ShangYu, HUANG ZhengLai(), FAN YongHui()   

  1. College of Agriculture, Anhui Agricultural University/Key Laboratory of Wheat Biology and Genetic Breeding in the Southern Huang-Huai Region, Ministry of Agriculture and Rural Affairs, Hefei 230036
  • Received:2025-03-18 Accepted:2025-07-22 Online:2025-10-01 Published:2025-10-10
  • Contact: HUANG ZhengLai, FAN YongHui

Abstract:

【Objective】This study aimed to investigate the impact of post-anthesis heat stress on yield formation and nitrogen assimilation capacity in wheat genotypes differing in heat tolerance, so as to provide a theoretical foundation for resilient and stable-yielding cultivation strategies.【Method】Field experiments were conducted from 2022 to 2024 at the National High-Tech Agricultural Park of Anhui Agricultural University using a split-plot design. Temperature was set as the main factor with two levels, including high temperature stress (HT) and ambient control (CK), while three nitrogen rates (no nitrogen (N0), 112.5 kg·hm-2 (N1), and 225.0 kg·hm-2 (N2)) and six wheat cultivars (three heat-tolerant: HM33, LK1109, AN1589; three heat-sensitive: FM5, TN19, WK1702) were arranged as subplot factors. High temperature stress was applied after anthesis. Grain yield, photosynthetic parameters (LI-6800), and activities of key nitrogen metabolism enzymes (spectrophotometry) were determined.【Result】High-temperature stress after anthesis significantly inhibited wheat growth, development, and physiological metabolism, leading to a marked decrease in yield, dry matter weight, relative chlorophyll content (SPAD), leaf area index (LAI), net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), nitrate reductase (NR) activity, and glutamine synthetase (GS) activity, as well as nitrogen accumulation, nitrogen use efficiency, nitrogen absorption efficiency, and nitrogen fertilizer use efficiency. The yield reduction due to high-temperature stress exhibited significant varietal heat tolerance differences and nitrogen application effects: the two-year average yield reduction of heat-tolerant varieties of HM33, LK1109, and AN1589 under N0, N1, and N2 treatments were 9.71%-6.13%, 9.91%-6.24%, and 11.87%-6.42%, respectively, lower than the reductions in sensitive varieties of FM5, TN19, and WK1702, which were 15.26%-10.38%, 12.56%-9.84%, and 12.93%-11.17%, respectively. In terms of physiological mechanisms, high-temperature stress after anthesis significantly reduced Pn across all nitrogen treatments, with the reduction showing a decreasing gradient as nitrogen levels increased: N0>N1>N2. The changes in Gs and Tr followed the same pattern as Pn. Furthermore, high-temperature stress significantly reduced NR and GS activity in the flag leaves across all nitrogen treatments, but increased nitrogen fertilization effectively and alleviated the decline in enzyme activity, with the highest enzyme activity observed under the N2 treatment. The reduction in nitrogen use efficiency under high-temperature stress also showed varietal differences: the nitrogen use efficiency of the heat-tolerant variety HM33 decreased the least under the N2 treatment (by 20.00%), while the sensitive variety FM5 exhibited the greatest decrease (31.55%) under the same treatment.【Conclusion】Post-flowering high temperature stress significantly reduced wheat yield, while the application of nitrogen fertilizers (112.5 and 225.0 kg·hm-2) effectively mitigated this decline. Heat-tolerant varieties minimized yield losses by maintaining the activity of key nitrogen-metabolizing enzymes and optimizing nitrogen assimilation and transport. Increased nitrogen application, particularly at the 225.0 kg·hm-2, significantly enhanced nitrogen use efficiency and promoted the accumulation of assimilates in grains. These results demonstrated that combining heat-tolerant genotypes with appropriate nitrogen management could improve thermotolerance in wheat, which provided a theoretical foundation for cultivating high and stable yields under heat stress.

Key words: wheat, high temperature stress, nitrogen application rate, nitrogen use efficiency, yield

Table 1

Nutrient content of 0-20 cm soil in the test field before sowing"

年份
Year
全氮
Total N
(g·kg-1)
有机质
Organic matter
(g·kg-1)
有效磷
Available phosphorous
(mg·kg-1)
碱解氮
Alkali hydrolyzed nitrogen (mg·kg-1)
速效钾
Rapidly-available
potassium (mg·kg-1)
2022—2023 1.28 13.64 31.43 73.63 210.59
2023—2024 0.98 10.65 33.67 61.97 212.79

Fig. 1

Dynamic diagram of temperature changes inside/outside the shed during the high-temperature period of wheat in the experimental field during the test period (2023 to 2024)"

Table 2

Effects of post-anthesis high temperature stress on wheat yield and yield components"

年份
Year
品种
Cultivar
处理
Treatment
穗数
Spike number (×104·hm-2)
穗粒数
Grain number
千粒重
1000-grain weight (g)
产量
Yield
(kg·hm-2)
2022—2023 淮麦33
HM33
CKN0 412.67±0.33b 35.00±0.58c 41.57±0.29b 6002.69±61.26e
CKN1 426.00±2.89a 39.33±0.88b 43.78±0.60a 7332.13±97.57c
CKN2 433.67±4.41a 44.00±0.58a 44.17±0.61a 8423.64±36.59a
HTN0 409.33±0.33b 35.00±0.58c 39.00±0.48c 5587.17±115.31e
HTN1 432.67±2.19a 39.33±0.33b 40.22±0.05bc 6843.79±59.90d
HTN2 435.67±2.33a 43.33±0.33a 42.26±0.34ab 7977.91±100.50b
龙科1109
LK1109
CKN0 458.33±4.41b 33.67±0.33c 34.78±0.19c 5365.67±38.42e
CKN1 520.00±1.15a 37.33±0.33b 37.60±0.25b 7300.37±98.38c
CKN2 525.67±1.20a 40.00±0.58ab 39.23±0.28a 8247.23±73.81a
HTN0 463.67±4.10b 33.00±0.58c 32.57±0.25d 4983.97±116.14f
HTN1 518.33±2.03a 37.67±0.58ab 34.40±0.08c 6715.17±22.63d
HTN2 521.33±3.18a 41.00±0.58a 36.68±0.14b 7839.32±52.21b
安农1589
AN1589
CKN0 412.00±2.00c 32.67±0.33c 40.41±0.27b 5438.75±60.75e
CKN1 425.33±3.18b 35.67±0.33b 42.49±0.24a 6444.22±33.30c
CKN2 504.33±2.33a 38.67±0.67a 42.89±0.38a 8361.77±81.84a
HTN0 411.67±1.45c 32.33±0.33c 36.79±0.16d 4896.53±18.61f
HTN1 433.33±1.67b 35.33±0.33b 38.72±0.23c 5928.12±60.76d
HTN2 501.00±2.31a 38.33±0.33a 40.75±0.38b 7824.58±37.19b
泛麦5号
FM5
CKN0 400.00±2.08c 35.00±0.58b 38.53±0.19a 5394.27±94.91e
CKN1 431.67±3.33b 39.00±0.58a 39.54±0.09a 6654.90±74.84c
CKN2 482.33±2.67a 40.67±0.33a 39.94±0.42a 7832.87±40.12a
HTN0 393.33±1.67c 33.67±0.88b 34.47±0.88b 4558.39±32.29f
HTN1 430.67±0.67b 39.00±0.58a 34.56±0.36b 5804.81±89.32d
HTN2 482.67±3.93a 40.33±0.67a 35.72±0.28b 6950.52±45.39b
泰农19
TN19
CKN0 416.67±4.41c 34.67±0.88c 37.46±0.66b 5405.86±15.07d
CKN1 430.00±1.15bc 41.33±0.33b 38.40±0.32b 6823.33±16.57b
CKN2 448.33±1.67a 43.67±0.33a 40.31±0.38a 7890.45±76.93a
HTN0 423.33±4.41c 33.33±0.67c 34.04±0.13c 4802.33±91.17e
HTN1 428.00±1.53bc 41.00±0.00b 34.60±0.05c 6071.70±17.69c
HTN2 442.33±5.36ab 43.00±0.58ab 37.17±0.07b 7071.21±133.9b
皖垦1702
WK1702
CKN0 417.00±1.00b 35.00±0.58b 38.75±0.26ab 5654.77±44.27e
CKN1 461.33±1.76a 39.67±0.33a 39.65±0.09ab 7255.52±49.71b
CKN2 465.00±2.65a 40.67±0.88a 40.87±1.04a 7720.82±44.12a
HTN0 413.33±3.28b 34.33±0.33b 35.14±0.06d 4986.85±89.52f
HTN1 455.33±5.93a 38.67±0.33a 36.14±0.29cd 6363.77±133.80d
HTN2 455.67±7.54a 39.33±0.67a 38.01±0.17bc 6810.76±137.57c
2023—2024 淮麦33
HM33
CKN0 403.00±0.58c 35.00±0.58c 40.23±0.66c 5671.36±10.82e
CKN1 421.33±1.86b 38.00±0.58b 43.16±0.83ab 6906.86±54.24c
CKN2 448.67±1.76a 44.00±0.58a 44.29±0.64a 8747.42±253.63a
HTN0 400.00±2.31c 34.67±0.88c 35.77±0.59d 4962.18±190.42f
HTN1 418.33±1.20b 37.33±0.33b 39.81±0.61c 6216.14±67.09d
HTN2 448.00±1.15a 43.00±0.58a 42.24±0.27b 8138.20±169.86b
龙科1109
LK1109
CKN0 433.00±0.58c 33.33±0.33b 39.19±0.65c 5655.99±31.03e
CKN1 496.33±1.33b 35.33±0.33b 41.03±0.74b 7196.21±126.63c
CKN2 519.00±2.31a 40.00±0.58a 42.97±0.74a 8923.33±210.22a
HTN0 431.67±1.45c 33.00±0.58b 34.67±1.01d 4937.71±96.83f
HTN1 495.00±2.31b 34.33±0.67b 38.06±0.89c 6469.13±173.86d
HTN2 517.67±1.33a 39.00±0.58a 40.88±0.81b 8251.40±58.26b
安农1589
AN1589
CKN0 410.33±0.88c 33.00±0.58bc 39.85±0.57c 5397.43±139.56d
CKN1 424.07±2.31b 35.00±0.58b 41.38±0.39b 6142.98±137.91c
CKN2 445.56±3.53a 39.00±0.58a 43.66±0.48a 7585.08±81.60a
HTN0 404.80±2.91c 31.33±0.33c 36.70±0.45d 4654.63±85.43e
HTN1 421.14±1.00b 34.00±1.53b 39.29±0.44c 5629.55±297.32d
HTN2 443.81±2.03a 38.00±0.58a 42.10±0.40b 7098.49±39.04b
泛麦5号
FM5
CKN0 402.87±1.33c 34.00±0.58b 38.54±0.39b 5279.13±107.51d
CKN1 423.33±0.33b 39.67±1.86a 39.62±0.18ab 6652.94±306.09b
CKN2 446.89±2.67a 41.00±1.15a 40.53±0.26a 7425.04±199.81a
HTN0 401.53±2.67c 33.00±1.15b 33.90±0.61d 4485.78±79.58e
HTN1 422.88±1.33b 39.33±0.88a 35.55±0.45c 5909.63±112.43c
HTN2 445.81±2.19a 40.00±1.53a 37.70±0.11c 6719.96±230.76b
泰农19
TN19
CKN0 414.87±1.33c 33.00±0.58c 38.39±0.65bc 5255.66±124.53d
CKN1 421.54±1.33b 43.67±0.88ab 39.53±0.39ab 7276.08±143.18b
CKN2 434.88±1.33a 44.67±0.88a 40.03±0.20a 7776.84±169.99a
HTN0 413.54±1.33c 32.00±0.58c 34.19±0.45d 4522.50±59.51e
HTN1 420.21±2.31b 42.00±1.00b 37.08±0.54c 6544.64±182.77c
HTN2 432.22±2.31a 43.67±0.67ab 37.38±0.65c 7054.41±156.49b
皖垦1702
WK1702
CKN0 420.21±2.31c 36.00±0.58b 37.54±0.49c 5676.01±35.50d
CKN2 432.22±2.31b 40.00±0.58a 40.17±0.38b 6943.89±71.83b
CKN1 446.89±3.53a 41.67±0.33a 43.95±0.68a 8180.68±2.93a
HTN0 418.88±1.33c 35.67±0.33b 32.65±0.66e 4878.76±128.01e
HTN1 429.55±1.33b 39.67±0.88a 35.79±0.64d 6101.30±225.0.84c
HTN2 445.56±2.67a 41.00±0.58a 40.05±0.37b 7317.06±166.20b
2022—2023 F
F-value
温度 Temperature 819.10** 45.99** 4729.13** 1076.15**
氮肥 Nitrogen 232.02** 219.46** 164.83** 4.76**
温度×氮肥Temperature×Nitrogen 345.65** 3.15** 123.94** 40.19**
2023—2024 温度 Temperature 3353.76** 585.14** 76.84* 60.78*
氮肥 Nitrogen 1049.74** 5.66* 9.40** 12.17**
温度×氮肥 Temperature×Nitrogen 1476.43** 28.24** 8.37* 34.09**

Fig. 2

The amount of dry matter distributed in each organ at the maturity stage of wheat (2022 to 2024)"

Fig. 3

Proportion of dry matter in each organ at maturity stage of wheat (2022 to 2024)"

Fig. 4

Effects of post-anthesis high temperature stress on the leaf area index (A, B) and relative chlorophyll content (C, D) of wheat flag leaves (2022 to 2024)"

Fig. 5

Effects of post-anthesis high temperature stress on the net photosynthetic rate (A, B), stomatal conductance (C, D), and transpiration rate (E, F) of wheat flag leaves (2022 to 2024)"

Fig. 6

Effects of high temperature stress after anthesis on nitrate reductase (NR) activity in wheat flag leaves"

Fig. 7

Effects of high temperature stress after anthesis on glutamine synthetase (GS) activity in wheat flag leaves"

Table 3

Effects of post-anthesis high temperature stress on nitrogen use efficiency in wheat"

品种
Cultivar
处理
Treatment
氮积累量
Nitrogen accumulation
(kg·hm-2)
氮素利用率
Nitrogen use
efficiency (kg·kg-1)
氮素吸收效率
Nitrogen uptake
efficiency (%)
氮肥利用率
Nitrogen recovery
efficiency (%)
淮麦33
HM33
CKN0 103.67±2.17e
CKN1 153.79±1.63c 15.80±0.76b 27.20±0.48c 35.71±1.16a
CKN2 188.57±2.06a 19.31±1.00a 37.15±0.54a 33.58±0.18b
HTN0 92.59±2.72f
HTN1 127.61±3.96d 12.11±0.76c 22.57±0.74d 24.95±1.02c
HTN2 165.98±5.81b 15.45±0.30b 32.69±1.14b 29.03±1.75d
龙科
1109
LK1109
CKN0 104.81±4.73e
CKN1 142.88±7.30c 17.94±0.33b 25.27±1.20c 27.13±2.75a
CKN2 188.93±4.30a 21.26±1.02a 37.21±0.75a 33.27±0.52b
HTN0 95.65±2.58f
HTN1 132.35±4.82d 12.74±1.10d 20.24±3.67d 26.15±2.30b
HTN2 166.36±2.42b 15.98±0.76c 32.77±0.41b 27.97±0.28b
安农1589
AN1589
CKN0 169.34±15.72cd
CKN1 214.41±15.75b 14.01±0.53b 37.91±2.53b 32.12±0.98a
CKN2 253.52±12.26a 20.76±0.75a 49.93±2.24a 33.29±1.38a
HTN0 118.14±8.84e
HTN1 154.87±8.46d 10.14±0.15c 31.05±1.61c 26.17±0.31b
HTN2 186.94±9.36c 15.42±0.73b 42.71±3.68b 27.21±0.37b
泛麦5号FM5 CKN0 156.26±7.32d
CKN1 204.04±5.08b 16.75±1.21b 36.09±0.64b 34.04±1.81a
CKN2 240.70±11.14a 21.57±1.17a 47.41±2.01a 33.39±1.53a
HTN0 104.50±7.99e
HTN1 141.99±8.45d 10.41±0.28d 25.11±1.38c 26.72±0.43b
HTN2 178.10±9.86c 13.90±0.51c 35.08±1.84b 29.11±0.94b
泰农19
TN19
CKN0 126.34±7.60c
CKN1 172.85±5.12b 15.03±0.35b 30.57±0.82c 33.14±2.24a
CKN2 209.33±8.44a 17.75±0.57a 41.23±1.67a 32.82±0.65a
HTN0 94.06±4.95d
HTN1 130.23±5.09c 10.12±0.17d 23.03±0.76d 25.77±1.54c
HTN2 167.72±6.25b 12.14±0.53c 33.04±1.17b 29.13±0.60b
皖垦1702
WK1702
CKN0 137.08±6.85d
CKN1 183.25±5.32b 17.22±0.75b 32.41±0.96b 32.90±1.21a
CKN2 219.42±5.32a 21.83±0.90a 43.22±1.06a 32.57±0.72a
HTN0 89.40±3.80f
HTN1 124.69±6.70e 11.17±1.76d 22.88±0.47c 25.15±2.56c
HTN2 162.74±0.53c 14.94±1.17c 32.06±0.20b 29.01±1.66b
F-value 温度 Temperature 1.64 127.18** 0.78 7.86
氮肥 Nitrogen 30.80** 116.16** 0.58 203.04**
温度×氮肥Temperature×Nitrogen 55.93** 6.18 162.60** 4.90

Fig. 8

Correlation analysis of wheat yield, its constituent factors, photosynthetic parameters and key enzymes of nitrogen metabolism"

[1]
张玉. 浅析小麦种植技术推广意义及有效途径. 种子科技, 2018, 36(5): 25.
ZHANG Y. Analysis on the significance and effective ways of wheat planting technology popularization. Seed Science & Technology, 2018, 36(5): 25. (in Chinese)
[2]
CHEN Z L, GALLI M, GALLAVOTTI A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Current Opinion in Plant Biology, 2022, 65: 102134.
[3]
曹彩云, 党红凯, 郑春莲, 李科江, 马俊永. 阶段高温对不同小麦品种产量的影响及其耐热性差异研究. 麦类作物学报, 2020, 40(3): 351-364.
CAO C Y, DANG H K, ZHENG C L, LI K J, MA J Y. Impacts of high temperature in different periods on yield and evaluation of heat tolerance in wheat varieties. Journal of Triticeae Crops, 2020, 40(3): 351-364. (in Chinese)
[4]
石晓丽, 史文娇. 极端高温对黄淮海平原冬小麦产量的影响. 生态与农村环境学报, 2016, 32(2): 259-269.
SHI X L, SHI W J. Impacts of extreme high temperature on winter wheat yield in the Huang-Huai-Hai Plain. Journal of Ecology and Rural Environment, 2016, 32(2): 259-269. (in Chinese)
[5]
李世平. 冬小麦耐热性及相关性状数量位点遗传剖析[D]. 杨凌: 西北农林科技大学, 2013.
LI S P. Genetic dissection of quantitative traits loci for heat tolerance index and traits associated with heat tolerance in winter wheat (Triticum aestivum L.)[D]. Yangling: Northwest A & F University, 2013. (in Chinese)
[6]
FAROOQ M, BRAMLEY H, PALTA J A, SIDDIQUE K H M. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 2011, 30(6): 491-507.
[7]
滕中华, 智丽, 宗学凤, 王三根, 何光华. 高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响. 作物学报, 2008, 34(9): 1662-1666.
TENG Z H, ZHI L, ZONG X F, WANG S G, HE G H. Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants. Acta Agronomica Sinica, 2008, 34(9): 1662-1666. (in Chinese)
[8]
王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响. 作物学报, 2025, 51(4): 1061-1076.

doi: 10.3724/SP.J.1006.2025.41054
WANG J, BAI H X, HAN Y Y, LIANG H, FENG Y N, ZHANG D S, LI P, ZONG Y Z, SHI X R, HAO X Y. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves. Acta Agronomica Sinica, 2025, 51(4): 1061-1076. (in Chinese)
[9]
TISCHNER R. Nitrate uptake and reduction in higher and lower plants. Plant, Cell & Environment, 2000, 23(10): 1005-1024.
[10]
LIANG C G, CHEN L P, WANG Y, LIU J, XU G L, LI T. High temperature at grain-filling stage affects nitrogen metabolism enzyme activities in grains and grain nutritional quality in rice. Rice Science, 2011, 18(3): 210-216.
[11]
冯万军, 邢国芳, 牛旭龙, 窦晨, 韩渊怀. 植物谷氨酰胺合成酶研究进展及其应用前景. 生物工程学报, 2015, 31(9): 1301-1312.
FENG W J, XING G F, NIU X L, DOU C, HAN Y H. Progress and application prospects of glutamine synthase in plants. Chinese Journal of Biotechnology, 2015, 31(9): 1301-1312. (in Chinese)
[12]
朱保磊, 陈金平, 李刚, 周国勤, 赵万兵, 赵永涛, 陈杰, 陈建辉, 石守设, 詹克慧. 小麦不溶性谷蛋白含量与HMW-GS及品质的关系. 麦类作物学报, 2021, 41(9): 1099-1104.
ZHU B L, CHEN J P, LI G, ZHOU G Q, ZHAO W B, ZHAO Y T, CHEN J, CHEN J H, SHI S S, ZHAN K H. Relationship between insoluble glutenin content and HMW-GS and quality in wheat. Journal of Triticeae Crops, 2021, 41(9): 1099-1104. (in Chinese)
[13]
LENKA N K, LENKA S, YASHONA D S, SHUKLA A K, ELANCHEZHIAN R, DEY P, PATRA A K. Carbon dioxide and/or temperature elevation effect on yield response, nutrient partitioning and use efficiency of applied nitrogen in wheat crop in central India. Field Crops Research, 2021, 264: 108084.
[14]
MANDIC V, KRNJAJA V, TOMIC Z, BIJELIC Z, SIMIC A, RUZIC MUSLIC D, GOGIC M. Nitrogen fertilizer influence on wheat yield and use efficiency under different environmental conditions. Chilean Journal of Agricultural Research, 2015, 75(1): 92-97.
[15]
MA T, CHEN K W, HE P R, DAI Y, YIN Y Q, PENG S H, DING J H, YU S E, HUANG J S. Sunflower photosynthetic characteristics, nitrogen uptake, and nitrogen use efficiency under different soil salinity and nitrogen applications. Water, 2022, 14(6): 982.
[16]
胡晨曦. 夜间增温对土壤-小麦系统氮素平衡及利用的影响[D]. 南京: 南京农业大学, 2019.
HU C X. Effects of nighttime warming on nitrogen balance and utilization in the soil-wheat system[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[17]
王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响. 浙江农业学报, 2021, 33(2): 193-202.

doi: 10.3969/j.issn.1004-1524.2021.02.02
WANG T G, SUN T, WANG J C, LI H Q, GAO Z, SHI Y Q. Effects of sowing date and density on population structure and lodging resistance of winter wheat under drip irrigation. Acta Agriculturae Zhejiangensis, 2021, 33(2): 193-202. (in Chinese)

doi: 10.3969/j.issn.1004-1524.2021.02.02
[18]
初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙. 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018, 29(8): 2517-2524.

doi: 10.13287/j.1001-9332.201808.027
CHU J P, ZHU W M, YIN L J, SHI Y H, DENG S Z, ZHANG L, HE M R, DAI X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chinese Journal of Applied Ecology, 2018, 29(8): 2517-2524. (in Chinese)
[19]
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
ZOU Q. Experimental Instruction of Plant Physiology. Beijing: China Agriculture Press, 2000. (in Chinese)
[20]
李泽松, 林清华, 张楚富, 彭进, 魏国威. 不同氮源对水稻幼苗根氨同化酶的影响. 武汉大学学报(自然科学版), 2000, 46(6): 729-732.
LI Z S, LIN Q H, ZHANG C F, PENG J, WEI G W. Effect of different nitrogen sources on ammonia-assimilating enzymes of the roots in rice seedlings. Journal of Wuhan University (Natural Science Edition), 2000, 46(6): 729-732. (in Chinese)
[21]
樊永惠, 李宇星, 马亮亮, 吕钊彦, 武倩倩, 张文静, 马尚宇, 黄正来. 灌浆期高温胁迫下外源水杨酸对小麦旗叶抗氧化生理特性的影响. 核农学报, 2022, 36(9): 1878-1886.

doi: 10.11869/j.issn.100-8551.2022.09.1878
FAN Y H, LI Y X, MA L L, Z Y, WU Q Q, ZHANG W J, MA S Y, HUANG Z L. Effects of exogenous salicylic acid on antioxidant physiological characteristics of wheat flag leaves under high temperature stress at grain filling stage. Journal of Nuclear Agricultural Sciences, 2022, 36(9): 1878-1886. (in Chinese)

doi: 10.11869/j.issn.100-8551.2022.09.1878
[22]
封超年, 郭文善, 施劲松, 彭永欣, 朱新开. 小麦花后高温对籽粒胚乳细胞发育及粒重的影响. 作物学报, 2000, 26(4): 399-405.
FENG C N, GUO W S, SHI J S, PENG Y X, ZHU X K. Effect of high temperature after anthesis on endosperm cell development and grain weight in wheat. Acta Agronomica Sinica, 2000, 26(4): 399-405. (in Chinese)
[23]
VERMA L, SINGH A K, SINGH S, TIWARI D, ZAIDI S T, YADAV R K, MISHRA S R, SINGH A K. Temperature stress its impact on yield of various wheat varieties at different growth stages. National Academy Science Letters, 2024, 47(3): 219-225.
[24]
岳鹏莉, 王晨阳, 卢红芳, 刘卫星, 马耕, 王强, 胡阳阳. 灌浆期高温胁迫对小麦灌浆的影响及叶面喷剂的缓解作用. 中国生态农业学报, 2016, 24(8): 1103-1113.
YUE P L, WANG C Y, LU H F, LIU W X, MA G, WANG Q, HU Y Y. Impact of high temperature stress on grain-filling and the relief effect of foliage sprays during grain-filling stage of wheat. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1103-1113. (in Chinese)
[25]
罗宏海, 李俊华, 张宏芝, 何在菊, 勾玲, 张旺锋. 源库调节对新疆高产棉花产量形成期光合产物生产与分配的影响. 棉花学报, 2009, 21(5): 371-377.

doi: 10.11963/cs090507
LUO H H, LI J H, ZHANG H Z, HE Z J, GOU L, ZHANG W F. Effects of source and sink manipulation on transportation and allocation of leaf photosynthetic products during flowering and boll-setting stage in high-yield cotton of Xinjiang. Cotton Science, 2009, 21(5): 371-377. (in Chinese)
[26]
COSSANI C M, REYNOLDS M P. Physiological traits for improving heat tolerance in wheat. Plant Physiology, 2012, 160(4): 1710-1718.

doi: 10.1104/pp.112.207753 pmid: 23054564
[27]
BALA S, ASTHIR B, TAGGAR M S. Grain carbon metabolism and stem reserve mobilization compensate high temperature stress in wheat. Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa, 2021, 65(1): 39-52.
[28]
SOLTANI A, WERADUWAGE S M, SHARKEY T D, LOWRY D B. Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source- sink relationships. BMC Genomics, 2019, 20(1): 312.
[29]
王磊. 硫化氢信号对干旱胁迫下十字花科植物光合作用的调节[D]. 太原: 山西大学, 2020.
WANG L. Regulation of hydrogen sulfide signal on photosynthesis of cruciferous plants under drought stress[D]. Taiyuan: Shanxi University, 2020. (in Chinese)
[30]
江珊, 吴龙英, 赵宝生, 黄佳惠, 蒋宇喆, 焦元, 黄进. 植物耐受高温胁迫的分子机制研究进展. 中国农学通报. 2024, 40(9): 132-138.

doi: 10.11924/j.issn.1000-6850.casb2023-0544
JIANG S, WU L Y, ZHAO B S, HUANG J H, JIANG Y Z, JIAO Y, HUANG J. Molecular mechanism of heat stress tolerance in plants: A review. Chinese Agricultural Science Bulletin, 2024, 40(9): 132-138. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2023-0544
[31]
LI R Q, HE Y, CHEN J Y, ZHENG S Y, ZHUANG C X. Research progress in improving photosynthetic efficiency. International Journal of Molecular Sciences, 2023, 24(11): 9286.
[32]
卞晓波, 陈丹丹, 王强盛, 王绍华. 花后开放式增温对小麦产量及品质的影响. 中国农业科学, 2012, 45(8): 1489-1498. doi:10.3864/j.issn.0578-1752.2012.08.004.
BIAN X B, CHEN D D, WANG Q S, WANG S H. Effects of different day and night temperature enhancements on wheat grain yield and quality after anthesis under free air controlled condition. Scientia Agricultura Sinica, 2012, 45(8): 1489-1498. doi:10.3864/j.issn.0578-1752.2012.08.004. (in Chinese)
[33]
余梦奇, 路梦莉, 张雅婷, 陈志英, 李文阳. 灌浆期高温对玉米叶片光合特性及抗氧化酶活性的影响. 中国农业气象, 2023, 44 (7): 599-610.
YU M Q, LU M L, ZHANG Y T, CHEN Z Y, LI W Y. Effects of high temperature on photosynthetic characteristics and antioxidant enzyme activities of maize leaves during filling stage. Chinese Journal of Agrometeorology, 2023, 44(7): 599-610. (in Chinese)
[34]
姜磊, 李焕勇, 张芹, 张会龙, 乔艳辉, 张华新, 杨秀艳. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响. 南京林业大学学报:自然科学版, 2020, 44(6): 152-160.
JIANG L, LI H Y, ZHANG Q, ZHANG H L, QIAO Y H, ZHANG H X, YANG X Y. Effects of arbuscular mycorrhiza fungi on the growth and physiological metabolism of Pyrus betulaefolia Bunge seedlings under saline-alkaline stress. Journal of Nanjing Forestry University: Natural Sciences Edition, 2020, 44(6): 152-160. (in Chinese)
[35]
付景, 孙宁宁, 刘天学, 马俊峰, 杨豫龙, 赵霞, 穆心愿, 李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响. 作物杂志, 2019(3): 118-125.
FU J, SUN N N, LIU T X, MA J F, YANG Y L, ZHAO X, MU X Y, LI C H. The effects of high temperature at spike stage on grain- filling physiology and yield of maize. Crops, 2019(3): 118-125. (in Chinese)
[36]
赵晶晶. 花后高温胁迫下不同施氮量对春小麦产量形成的影响机理[D]. 银川: 宁夏大学, 2015.
ZHAO J J. The mechanism of the effect of different nitrogen application rates on spring wheat yield formation under post-anthesis high temperature stress[D]. Yinchuan: Ningxia University, 2015. (in Chinese)
[37]
FENG B, LIU P, LI G, DONG S T, WANG F H, KONG L A, ZHANG J W. Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat‐resistant winter wheat varieties. Journal of Agronomy and Crop Science, 2014, 200(2): 143-155.
[38]
GAO C H, SUN M, ANWAR S, FENG B, REN A X, LIN W, GAO Z Q. Response of physiological characteristics and grain yield of winter wheat varieties to long-term heat stress at anthesis. Photosynthetica, 2021, 59(4): 640-651.
[39]
蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望. 生命科学, 2018, 30(10): 1060-1071.
JIANG Z M, WANG W, CHU C C. Towards understanding of nitrogen use efficiency in plants. Chinese Bulletin of Life Sciences, 2018, 30(10): 1060-1071. (in Chinese)
[40]
刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展. 作物杂志, 2023(4): 7-15.
LIU Y, GU Y Y, ZHANG W Y, YANG J C. Research advances in the effects of water and nitrogen and their interaction on the grain yield, water and nitrogen use efficiencies of wheat. Crops, 2023(4): 7-15. (in Chinese)
[41]
曹珍珍, 张其芳, 韦克苏, 杨卫丽, 刘光快, 程方民. 水稻籽粒氮代谢几个关键酶对花后高温胁迫的响应及其与贮藏蛋白积累关系. 作物学报, 2012, 38(1): 99-106.
CAO Z Z, ZHANG Q F, WEI K S, YANG W L, LIU G K, CHENG F M. Response of some key enzyme activities involved in nitrogen metabolism to high temperature at filling stage and its relation to storage protein accu-mulation in rice grain. Acta Agronomica Sinica, 2012, 38(1): 99-106. (in Chinese)
[42]
王利群, 王勇, 董英, 王文兵. 硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆. 生物工程学报, 2003, 19(5): 632-635.
WANG L Q, WANG Y, DONG Y, WANG W B. Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene. Chinese Journal of Biotechnology, 2003, 19(5): 632-635. (in Chinese)
[43]
叶利庭, 吕华军, 宋文静, 图尔迪, 沈其荣, 张亚丽. 不同氮效率水稻生育后期氮代谢酶活性的变化特征. 土壤学报, 2011, 48(1): 132-140.
YE L T, H J, SONG W J, TU E D, SHEN Q R, ZHANG Y L. Variation of activity of n metabolizing enzymes in rice plants different in n use efficiency at their late growth stages. Acta Pedologica Sinica, 2011, 48(1): 132-140. (in Chinese)
[44]
DANIEL R M, DANSON M J. Temperature and the catalytic activity of enzymes: A fresh understanding. FEBS Letters, 2013, 587(17): 2738-2743.

doi: 10.1016/j.febslet.2013.06.027 pmid: 23810865
[45]
刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展. 作物杂志, 2022(1): 11-19.
LIU L, SONG N N, QI X L, CUI K H. Research advances on the relationship between root characteristics and nitrogen uptake and utilization efficiency in rice. Crops, 2022(1): 11-19. (in Chinese)
[46]
彭超军, 董海滨, 齐学礼, 华夏, 高崇, 赵明忠, 胡琳. 不同籽粒氮含量小麦的氮素转运、分配和相关生理特性研究. 麦类作物学报, 2025, 1-8.
PENG C J, DONG H B, QI X L, HUA X, GAO C, ZHAO M Z, HU L. Research on N translocation, distribution, and related physiological characteristics of wheat with different grain N contents. Journal of Cereal Crops, 2025, 1-8. (in Chinese)
[47]
ANAS M, LIAO F, VERMA K K, SARWAR M A, MAHMOOD A, CHEN Z L, LI Q, ZENG X P, LIU Y, LI Y R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 2020, 53(1): 47.

doi: 10.1186/s40659-020-00312-4 pmid: 33066819
[48]
BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[4] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[5] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[6] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] MENG Hui, LUO BingYu, LU ZhengYu, WANG Peng, KANG DongRu, ZHENG ChengShu, WANG WenLi. Cloning of CmASMT and Its Role in Thermotolerance of Chrysanthemum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1617-1626.
[9] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[10] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[11] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[12] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[13] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[14] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[15] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!