Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 182-191.doi: 10.3864/j.issn.0578-1752.2025.01.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Immune Effect Evaluation of Combined Inactivated Vaccine Against Avian Influenza and Newcastle Disease

YU QingQing1(), ZHOU XiangYu1, LI WenXin1, LIU YanJing1, WANG Yan1, HE XinWen1, HE Chen1, DENG GuoHua1,3, SHI JianZhong1,3, TIAN GuoBin1,3, BAO HongMei1,3, ZENG XianYing1,2,3,*(), CHEN HuaLan1,3,*()   

  1. 1 National Poultry Laboratory Animal Resource Center/State Key Lab for Animal Disease Control and Prevention/Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
    2 Harbin Weike Biotechnology Company Limited, Harbin 150069
    3 Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Harbin 150069
  • Received:2024-08-04 Accepted:2024-11-08 Online:2025-01-01 Published:2025-01-07
  • Contact: ZENG XianYing, CHEN HuaLan

Abstract:

【Background】 H5, H7 and H9 subtypes of avian influenza viruses (AIV) and Newcastle disease virus (NDV) are important pathogens that seriously jeopardize the avian industry, and vaccination with inactivated vaccines in the form of oil emulsions is the mainstay of prevention of avian influenza and Newcastle disease. At present, more than two vaccines are needed to prevent these infectious diseases in poultry farms, which leads to more times of vaccination and heavy immune burden on poultry. In addition, the mineral oil used to produce oil-emulsion inactivated vaccines is mainly dependent on imports, which has the risk of “neck sticking”. 【Objective】In order to reduce the number of vaccinations, lower the burden of immunization, and compare the effects of domestic and imported mineral oil adjuvants, this study developed and evaluated the inactivated vaccines, which could simultaneously prevent avian influenza (H5+H7+H9) and Newcastle disease by using different mineral oil adjuvants. This study expected to achieve the immunization effect of “one immunization preventing multiple diseases” and provide data support for the localization of mineral adjuvants for animal vaccines.【Method】A total of five vaccine strains of avian influenza H5-Re13, H5-Re14, H7-Re4, H9-GX11583 and Newcastle disease ND rLa-VII strains that have been constructed in the laboratory, which were inoculated into chicken embryos, harvested the allantoic fluid, concentrated and inactivated. Different mineral oil adjuvants (Total, Marcol 52 and HTM70) were added at a ratio of 1 part antigen to 3 parts of adjuvant. The mixture was then thoroughly mixed and emulsified to prepare the combined inactivated vaccine. Finally, the safety and efficacy of the vaccine were evaluated through intramuscular injection on three-week-old SPF chickens using doses of 2 mL and 0.5 mL, respectively.【Result】The results of the immunity efficacy test showed that the three kinds of mineral oil adjuvanted dichotomous multivalent inactivated vaccines had good safety for chickens; all three mineral oil adjuvanted vaccines could produce effective HI antibodies against H5-Re13, H5-Re14, H7-Re4, H9-GX11583 and ND rLa-VII strains after inoculation of chickens, and could obtain complete immune protection against the attack of the efficacy test strains. The results of HI antibody duration showed that all three mineral oil adjuvant inactivated vaccines could continuously induce high level of antibodies for more than half a year, compared with imported mineral oils (Total, Marcol 52), the level of HI antibody induced by domestic mineral oil HTM70 was close to that of imported mineral oil Total and higher than that of imported mineral oil Marcol 52, but the domestic mineral oil adjuvant HTM70 had no significant difference between batches.【Conclusion】The combined inactivated vaccine against avian influenza (H5+H7+H9) and Newcastle disease prepared in this study had a good immune efficacy on SPF chickens, and the domestic substitution of mineral oil adjuvant was expected.

Key words: avian influenza, Newcastle disease, multivalent, inactive vaccine, adjuvant, immune efficacy

Fig. 1

HI antibody titers induced by combined inactivated vaccines with 3 different mineral oil adjuvants"

Table 1

Virus shedding and survival results of immunized chicken after challenged with the virulent strain"

攻毒毒株
Challenge virus
组别(来源)
Group(Source)
攻毒后第3天和第5天排毒阳性率 排毒数/总数
Number of chickens shedding virus/Total chickens on days 3 and 5 post-challenge
保护率
Protection ratio
第3天 Day 3 第5天 Day 5
喉头 Oropharynx 泄殖腔 Cloaca 喉头 Oropharynx 泄殖腔 Cloaca
DK/FJ/S1424/2020(H5N6) Total(进口Import) 0/10 0/10 0/10 0/10 100%
Marcol 52(进口Import) 0/10 0/10 0/10 0/10 100%
HTM70(国产Domestic) 0/10 0/10 0/10 0/10 100%
对照组Control 10/10 10/10 * * 0%
WS/SX/4-1/2020(H5N8) Total(进口Import) 0/10 0/10 0/10 0/10 100%
Marcol 52(进口Import) 0/10 0/10 0/10 0/10 100%
HTM70(国产Domestic) 0/10 0/10 0/10 0/10 100%
对照组Control 10/10 10/10 * * 0%
CK/YN/SD024/2021(H7N9) Total(进口Import) 0/10 0/10 0/10 0/10 100%
Marcol 52(进口Import) 0/10 0/10 0/10 0/10 100%
HTM70(国产Domestic) 0/10 0/10 0/10 0/10 100%
对照组Control 10/10 10/10 * * 0%
CK/GX/S11583/2019(H9N2) Total(进口Import) 0/10 0/10 0/10 0/10 100%
Marcol 52(进口Import) 0/10 0/10 0/10 0/10 100%
HTM70(国产Domestic) 0/10 0/10 0/10 0/10 100%
对照组Control 9/10 4/10 9/10 6/10 0%
CK/HeB/38/2009(NDV) Total(进口Import) 0/10 0/10 0/10 0/10 100%
Marcol 52(进口Import) 0/10 0/10 0/10 0/10 100%
HTM70(国产Domestic) 0/10 0/10 0/10 0/10 100%
对照组Control 10/10 10/10 * * 0%

Fig. 2

Duration of HI antibody induced by combined inactivated vaccines with 3 different mineral oil adjuvants"

Fig. 3

HI antibody induced by inactive vaccines with 3 batches of HTM70 adjuvants"

[1]
SHI J Z, ZENG X Y, CUI P F, YAN C, CHEN H L. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerging Microbes & Infections, 2023, 12(1): 2155072.
[2]
BROWN V R, BEVINS S N. A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. Veterinary Research, 2017, 48(1): 68.
[3]
XIA J, LI Y X, DONG M Y, GUO Z W, LUO Y W, LI N L, ZHAO Y, LI M, LIN Y, XU J, et al. Evolution of prevalent H9N2 subtype of avian influenza virus during 2019 to 2022 for the development of a control strategy in China. Poultry Science, 2023, 102(10): 102957.
[4]
AMANOLLAHI R, ASASI K, ABDI-HACHESOO B. Effect of Newcastle disease and infectious bronchitis live vaccines on the immune system and production parameters of experimentally infected broiler chickens with H9N2 avian influenza. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 71: 101492.
[5]
KONG L C, YOU R R, ZHANG D C, YUAN Q L, XIANG B, LIANG J P, LIN Q Y, DING C, LIAO M, CHEN L B, REN T. Infectious bronchitis virus infection increases pathogenicity of H9N2 avian influenza virus by inducing severe inflammatory response. Frontiers in Veterinary Science, 2021, 8: 824179.
[6]
AWUNI J A, BIANCO A, DOGBEY O J, FUSARO A, YINGAR D T, SALVIATO A, ABABIO P T, MILANI A, BONFANTE F, MONNE I. Avian influenza H9N2 subtype in Ghana: Virus characterization and evidence of co-infection. Avian Pathology, 2019, 48(5): 470-476.

doi: 10.1080/03079457.2019.1624687 pmid: 31142135
[7]
LIU S, ZHUANG Q Y, WANG S C, JIANG W M, JIN J H, PENG C, HOU G Y, LI J P, YU J M, YU X H, et al. Control of avian influenza in China: Strategies and lessons. Transboundary and Emerging Diseases, 2020, 67(4): 1463-1471.

doi: 10.1111/tbed.13515 pmid: 32065513
[8]
ZHUANG Q Y, WANG S C, LI J P, LIU D, LIU S, JIANG W M, CHEN J M. A clinical survey of common avian infectious diseases in China. Avian Diseases, 2014, 58(2): 297-302.
[9]
高翔. 家禽传染病时空特征与风险评估及基于WebGIS的监测预警系统的研究[D]. 哈尔滨:东北农业大学2019.
GAO X. Spatiotemporal patterns and predicting the risk distribution of poultry infectious diseases and the reaserch of monitoring and early warning system based on the WebGIS[D]. Harbin:Northeast Agricultural University, 2019. (in Chinese)
[10]
CUI Y F, LI Y L, LI M H, ZHAO L, WANG D L, TIAN J M, BAI X L, CI Y P, WU S S, WANG F, et al. Evolution and extensive reassortment of H 5 influenza viruses isolated from wild birds in China over the past decade. Emerging Microbes & Infections, 2020, 9(1): 1793-1803.
[11]
LEE D H, BERTRAN K, KWON J H, SWAYNE D E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. Journal of Veterinary Science, 2017, 18(S1): 269-280.
[12]
LI Y B, LI M H, LI Y L, TIAN J M, BAI X L, YANG C, SHI J Z, AI R, CHEN W D, ZHANG W T, et al. Outbreaks of highly pathogenic avian influenza (H5N6) virus subclade 2.3.4.4h in swans, Xinjiang, Western China, 2020. Emerging Infectious Diseases, 2020, 26(12): 2956-2960.
[13]
CUI P F, ZENG X Y, LI X Y, LI Y B, SHI J Z, ZHAO C H, QU Z Y, WANG Y W, GUO J, GU W L, et al. Genetic and biological characteristics of the globally circulating H5N8 avian influenza viruses and the protective efficacy offered by the poultry vaccine currently used in China. Science China Life Sciences, 2022, 65(4): 795-808.
[14]
LI C, CHEN H. H7N9 influenza virus in China. Cold Spring Harbor Perspectives in Medicine, 2021, 11(8): a038349.
[15]
SHI J Z, DENG G H, MA S J, ZENG X Y, YIN X, LI M, ZHANG B, CUI P F, CHEN Y, YANG H L, et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host & Microbe, 2018, 24(4):558-568.
[16]
GU W L, SHI J Z, CUI P F, YAN C, ZHANG Y P, WANG C C, ZHANG Y C, XING X, ZENG X Y, LIU L L, et al. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China. Emerging Microbes & Infections, 2022, 11(1): 1174-1185.
[17]
YIN X, DENG G H, ZENG X Y, CUI P F, HOU Y J, LIU Y J, FANG J Z, PAN S X, WANG D X, CHEN X H, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathogens, 2021, 17(4): e1009561.
[18]
ZENG X Y, HE X W, MENG F, MA Q, WANG Y, BAO H M, LIU Y J, DENG G H, SHI J Z, LI Y B, et al. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses. Journal of Integrative Agriculture, 2022, 21(7): 2086-2094.

doi: 10.1016/S2095-3119(22)63904-2
[19]
BU Y W, YANG H M, JIN J H, ZHAO J, XUE J, ZHANG G Z. Recombinant Newcastle disease virus (NDV) La Sota expressing the haemagglutinin-neuraminidase protein of genotype VII NDV shows improved protection efficacy against NDV challenge. Avian Pathology, 2019, 48(2): 91-97.
[20]
陈源, 崔鹏飞, 施建忠, 张元成, 于晴晴, 颜成, 张亚萍, 王丛丛, 张洁, 王燕, 等. 2019—2022年中国H6N1亚型禽流感病毒的生物学特性分析. 中国农业科学, 2024, 57(9): 1820-1832. doi: 10.3864/j.issn.0578-1752.2024.09.015.
CHEN Y, CUI P F, SHI J Z, ZHANG Y C, YU Q Q, YAN C, ZHANG Y P, WANG C C, ZHANG J, WANG Y, et al. Biological characteristics of H6N1 subtype avian influenza virus from 2019 to 2022 in China. Scientia Agricultura Sinica, 2024, 57(9): 1820-1832. doi: 10.3864/j.issn.0578-1752.2024.09.015. (in Chinese)
[21]
麻琦, 和新文, 王燕, 刘艳晶, 潘舒心, 侯玉杰, 施建忠, 邓国华, 包红梅, 刘景利, 等. 商品疫苗对我国h9.4.2.5分支H9N2亚型禽流感分离株的免疫保护. 中国农业科学, 2023, 56(15):3040-3050. doi: 10.3864/j.issn.0578-1752.2023.15.017.
MA Q, HE X W, WANG Y, LIU Y J, PAN S X, HOU Y J, SHI J Z, DENG G H, BAO H M, LIU J L, et al. The Protective efficacy of commercial vaccines against h9n 2 avian influenza virus of branch h9.4.2.5 isolated in China. Scientia Agricultura Sinica, 2023, 56(15):3040-3050. doi: 10.3864/j.issn.0578-1752.2023.15.017. (in Chinese)
[22]
刘秀梵. 基因Ⅶ型新型疫苗的创制与我国新城疫的防控进展. 兽医导刊, 2020(19): 4-5.
LIU X F. Creation of a new vaccine of gene Ⅶ and the progress of prevention and control of Newcastle disease in China. Veterinary Orientation, 2020(19): 4-5. (in Chinese)
[23]
CHEN H L, BU Z G. Development and application of avian influenza vaccines in China. Current Topics in Microbiology and Immunology, 2009, 333: 153-162.

doi: 10.1007/978-3-540-92165-3_7 pmid: 19768404
[24]
ZENG X Y, TIAN G B, SHI J Z, DENG G H, LI C J, CHEN H L. Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Science China Life Sciences, 2018, 61(12): 1465-1473.
[25]
HE D L, WANG F F, ZHAO L M, JIANG X N, ZHANG S, WEI F, WU B R, WANG Y, DIAO Y X, TANG Y. Epidemiological investigation of infectious diseases in geese on mainland China during 2018-2021. Transboundary and Emerging Diseases, 2022, 69(6): 3419-3432.

doi: 10.1111/tbed.14699 pmid: 36088652
[26]
ZHANG X D. Veterinary infectious diseases control in China. The Lancet Infectious Diseases, 2019, 19(4): 354-356.
[27]
YEHIA N, SALEM H M, MAHMMOD Y, SAID D, SAMIR M, ABDEL MAWGOD S, SOROUR H K, ABDELRAHMAN M A A, SELIM S, SAAD A M, et al. Common viral and bacterial avian respiratory infections: An updated review. Poultry Science, 2023, 102(5): 102553.
[28]
郑念军. 科学减负、提高疫苗免疫效率是控制家禽疫病的关键. 北方牧业, 2017(13): 15.
ZHENG N J. Reducing the burden scientifically and improving the efficiency of vaccine immunization are the key to control poultry epidemics. Northern Animal Husbandry, 2017(13): 15. (in Chinese)
[29]
WU Q, WEI L, DU X, SUN W Y, LI S, GUO X C, JIANG M, LIU J M, XUE Z Q, LI H J, ZHANG T T, WANG W, REN G P. Development and evaluation of Newcastle disease - Avian influenza bivalent vector vaccines in commercial chickens. International Immunopharmacology, 2023, 120: 110363.
[30]
曾显营, 田国彬, 陈化兰. 中国H5/H7亚型禽流感疫苗研制和应用进展. 中国科学: 生命科学, 2023, 53(12): 1700-1712.
ZENG X Y, TIAN G B, CHEN H L. Progress in development and application of H5/H7 avian influenza vaccines in China. Scientia Sinica (Vitae), 2023, 53(12): 1700-1712. (in Chinese)
[31]
钱忠辉, 张华弟, 葛宇燕, 张子悦, 朱永军. 兽用疫苗佐剂的研究进展. 国外畜牧学(猪与禽), 2023, 43(3): 74-78.
QIAN Z H, ZHANG H D, GE Y Y, ZHANG Z Y, ZHU Y J. Research progress of veterinary vaccine adjuvant. Animal Science Abroad (Pigs and Poultry), 2023, 43(3): 74-78. (in Chinese)
[32]
李涛. 高档白油生产技术现状与发展前景分析. 石油化工技术与经济, 2022, 38(5): 55-58.
LI T. Analysis on production technology status and development prospect of high grade white oil. Technology & Economics in Petrochemicals, 2022, 38(5): 55-58. (in Chinese)
[1] CHEN Yuan, CUI PengFei, SHI JianZhong, ZHANG YuanCheng, YU QingQing, YAN Cheng, ZHANG YaPing, WANG CongCong, ZHANG Jie, WANG Yan, DENG GuoHua, CHEN HuaLan. Biological Characteristics of H6N1 Subtype Avian Influenza Virus from 2019 to 2022 in China [J]. Scientia Agricultura Sinica, 2024, 57(9): 1820-1832.
[2] WANG XiaoBin, YAN Xiang, LI XiuYing, TU Cheng. Environmental Residues of Organosiloxane-Based Adjuvants and Its Environmental Risks for Use as Agrochemical Adjuvants [J]. Scientia Agricultura Sinica, 2024, 57(1): 142-158.
[3] MA Qi, HE XinWen, WANG Yan, LIU YanJing, PAN ShuXin, HOU YuJie, SHI JianZhong, DENG GuoHua, BAO HongMei, LIU JingLi, GUO XingFu, MAO ShengGang, HU JingLei, LU Tong, YANG Fan, TIAN GuoBin, ZENG XianYing, CHEN HuaLan. The Protective Efficacy of Commercial Vaccines Against H9N2 Avian Influenza Virus of Branch h9.4.2.5 Isolated in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 3040-3050.
[4] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[5] LI YongHua, CHE LuPing, QIU XuSheng, TAN Lei, SUN YingJie, LIU WeiWei, SONG CuiPing, LIAO Ying, DING Chan, WANG JinQuan, MENG ChunChun. Construction of Chicken TIGAR Gene Eukaryotic Expression Plasmid and Evaluation of Its Anti-Apoptotic Function [J]. Scientia Agricultura Sinica, 2019, 52(6): 1102-1109.
[6] REN LiRui,CHEN FuLiang,YIN MingMing. Effect of Adjuvant on Conductivity and Deposition of Electrochargeable Liquid [J]. Scientia Agricultura Sinica, 2018, 51(23): 4459-4469.
[7] LI Li, DU XIN, ZHANG LiNa, YANG Liu, GAO XiaoQing, TANG DongXue, ZHAO HaiYuan, JIANG XiaoMei, ZHANG TianShu, LI JinXiang. Optimization of Cultivation Conditions for Reassortant Avian Influenza Virus H7N9 H7-Re1 Strain [J]. Scientia Agricultura Sinica, 2018, 51(17): 3415-3426.
[8] CHEN Hong, YANG Liu, SONG HaiYan, SHI Ying, MENG LingWei, FU ChunJie, Zhang Dan, ZHAO HaiYuan, LI JinXiang, JIANG XiaoMei, ZHANG TianShu. Domestication of Suspended MDCK Cells and Cultivation of H5 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2018, 51(17): 3405-3414.
[9] YANG JinSong, WU Tao, LI JinXiang. Quality Analysis and Development Direction of Recombinant Avian Influenza Inactivated Vaccine (H5 subtype) [J]. Scientia Agricultura Sinica, 2018, 51(17): 3397-3404.
[10] SUN XiaoHan, ZHANG BiCheng, ZHANG Qiang, HE KongWang, ZHANG XueHan. Adjuvant Effects of Flagellin from Non-Pathogenic E.coli on FMDV [J]. Scientia Agricultura Sinica, 2017, 50(9): 1714-1722.
[11] QI Wen-bao, LI Fang, LI Hua-nan, HUANG Li-hong, HE Jun, MU Guang-hui, LUO Kai-jian, LIAO Ming. Electrochemical Luminescence Immunoassay for the Detection of H9 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3064-3070.
[12] DING Jie, GAO Yu-wei, SANG Xiao-yu, CHENG Kai-hui, YU Zhi-jun, ZHANG Kun, CHAI Hong-liang, WANG Tie-cheng, XIA Xian-zhu, HUA Yu-ping. The Adaptation of H9N2 Subtype AIV in Mouse and Analysis of Amino Acid Mutation [J]. Scientia Agricultura Sinica, 2015, 48(15): 3056-3063.
[13] WANG Yun-he, BAO Hong-mei, SUN Jia-shan, LI Yan-bing, XU Xiao-long, WANG Zi-long, SHI Jian-zhong, ZENG Xian-ying, WANG Xiu-rong, CHEN Hua-lan. Development of RT-PCR Technique for Detection of H7N9 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3050-3055.
[14] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[15] DING Pei-Pei, LIU Yue-Huan, CHEN Ming-Yong, HAN Chun-Hua, LIN Jian, HAN Jing-Wen, PAN Jie. Study on the Susceptibility of Turtledoves to Avian Influenza Virus Subtype H9N2 and its Receptor [J]. Scientia Agricultura Sinica, 2012, 45(12): 2482-2490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!