Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3183-3198.doi: 10.3864/j.issn.0578-1752.2023.16.011

• HORTICULTURE • Previous Articles     Next Articles

Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora

HE Dan1,2(), YOU XiaoLong1, HE SongLin1,2(), ZHANG MingXing1, ZHANG JiaoRui1, HUA Chao1, WANG Zheng1, LIU YiPing1   

  1. 1 College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002
    2 College of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, Henan
  • Received:2023-01-09 Accepted:2023-04-27 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】 The CalS family plays an important role in regulating callose synthesis in plants. In this study, the members of the CalS family were identified and their bioinformatics and expression patterns were analyzed, which provided an evidence for distant cross incompatibility of Paeonia lactiflora (P. lactiflora). 【Method】The pollen germination and tube growth in self- and cross-pollinated stigma were observed by fluorescence microscope. The callose content, endogenous Abscisic acid (ABA) content and β-1,3-glucanase activity in stigma were measured. Eight members of the CalS family were cloned, and Expasy, MEME, TBtools, MEGA 7.0 and so on were used to predict the basic physicochemical properties and conserved motifs of proteins of the PlCalS family members and to construct a phylogenetic evolutionary tree. The expression of eight PlCalS in stigma at 24 h of self-pollination, 24 h of cross-pollination and 36 h of cross-pollination were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Multiple sequence alignment of CalS5 was performed, a phylogenetic tree was constructed, and the expression characteristics of PlCalS5 in response to ABA treatment at different concentrations were analyzed. 【Result】Fluorescence microscopic observation of pollen tube showed that callose plugging occurred in the stigma of hybrid, which restricted the pollen germination and tube growth. Callose content in cross-pollinated stigma was found to be higher in most periods than that in self-pollinated stigma. Then, the callose activity of β-1,3-glucose and ABA content in stigma with different pollination affinity showed regular differences. The members of the PlCalS family of P. lactiflora were identified and named by integrity analysis of the structural domains and sequence matching, and 15 conserved motifs with stable distribution in the PlCalS family were encoded by every eight genes. Multi-species phylogenetic relationships showed that the CalS family could be divided into three branches, with the PlCalS family distributed in only two branches, of which PlCalS5 was more closely related to CalS5 in Paeonia suffruticosa, Arabidopsis thaliana and Solanum lycopersicum. The bioinformatics analysis showed that the eight family members encoded 1 745-1 951 amino acids, with a total number of 28 583-31 870 atoms and isoelectric points of 7.99-9.13. The analysis of the FPKM values in transcriptome showed that the PlCalS family members were highly expressed in the same period of hybridization and at 36 h of hybridization under the same treatment. qRT-PCR showed that the relative expression levels of 8 genes at 24 h of self-pollination were lower than those at 24 h and 36 h of cross-pollination. In addition, the PlCalS5 gene was found to be more sensitive to high ABA treatment. 【Conclusion】 There were eight gene members in the CalS family of P. lactiflora, which played an important role in regulating the callose formation of P. lactiflora. The expression level of the PlCalS gene in cross-pollinated stigma was higher than that in self-pollinated stigma in most periods, which might be involved in callose abnormal deposition. Heterologous pollen stimulation to the stigma of P. lactiflora could enhance a certain ABA synthesis pathway. ABA induced callose deposition by positively regulating the expression of callose synthesis genes, thus inhibiting pollen germination and tube elongation, and finally affecting pollination compatibility.

Key words: Paeonia lactiflora, distant hybridization incompatibility, CalS gene family, gene expression analyses

Table 1

The primers used for cloning gene"

基因名称 Gene name 片段名称 Fragment name 序列 Primer sequence (5′-3′)
PlCalS1 PlCalS1-1 F: 5′-ATGTCGTCGAGAGGCGGGTCT-3′
R: 5′-ATGGTCTGAGCAAATCCAGGAGG-3′
PlCalS1-2 F: 5′-AGATACATTTTGAAGGTCGTTTCAGCTGC-3′
R: 5′-TTCATCTGGAAAGATTTTTTGCAAGTAAAAAAG-3′
PlCalS1-3 F: 5′-GCTGTTCTTTTCTCCATAAAGGCCCTTG-3′
R: 5′-TATTCTGCACCCCCATGAAGTAATGTT-3′
PlCalS1-4 F: 5′-GCAGTTACAACTGGCCCCTGTATTTTTC-3′
R: 5′-TTACTCTTTATTGCTAGTGGTGCGGT-3′
PlCalS2 PlCalS2-1 F: 5′-ATGAGTTACCCTGAGATCCGGGCT-3′
R: 5′-AGGAACAAGCAAGAGGTTCATTTCCCT-3′
PlCalS2-2 F: 5′-GGCAGCAAAGTTTGCCCAGTTGT-3′
R: 5′-ATTTTGAACGCTTCTTCCATGTAGTTATCC-3′
PlCalS2-3 F: 5′-AGCCTGAAAATCAAAACCATGCCATT-3′
R: 5′-TTACTCTTTATTGCTAGTGGTGCGGTC-3′
PlCalS3 PlCalS3-1 F: 5′-ATGTCGTCGAGAGGCGGGTCT-3′
R: 5′-AACGACCTTCAAAATGTATCTTAACTTAACATG-3′
PlCalS3-2 F: 5′-AGCTGTGCTTGATGTTATCCTTAGTTGGA-3′
R: 5′-CCTCCGTGCAGTAAGGAGTCAAAA-3′
PlCalS3-3 F: 5′-CTTCTCAAATTCATTGTTTATGGACATGCCT-3′
R: 5′-TGAAGTAAGGTCCTTCCAAAATAGTGGG-3′
PlCalS3-4 F: 5′-ATACTCATGCAACTACAATTGGCTCCAGTATT-3′
R: 5′-TTACTCTTTGCTCCGTGACGAACG-3′
PlCalS5 PlCalS5-1 F: 5′-ATGTCGACCCTCGAGTCGGGCCCA-3′
R: 5′-CCCCTCCCAACATATATTCTTGGCTGT-3′
PlCalS5-2 F: 5′-TGCGACGTTGGATTGAAAACTCGGACTGG-3′
R: 5′-AGTAAAGATATGCTCACGGACACCTAA-3′
PlCalS5-3 F: 5′-TTGAAGATGCGCAATCTTCTGGAA-3′
R: 5′-TTACTTCTGCTTCTTTCCACCAGCCAG-3′
PlCalS9 PlCalS9-1 F: 5′-ATGGCTCGAGTAGAGAAGCTATGG-3′
R: 5′-TTTATATAAAGGAAGGATATGAAGACTGAG-3′
PlCalS9-2 F: 5′-CGCATATTCTACAACAAGGCGTGTT-3′
R: 5′-CTGGCTAATGTTTGTCCCCGGTAA-3′
PlCalS9-3 F: 5′-GATGAAAGTGCACTTGATTCGGAAC-3′
R: 5′-GCACAGTTAGCATGGTACAGAAATAGT-3′
PlCalS9-4 F: 5′-GGCTTGGGCAACTTTTTGATTTC-3′
R: 5′-TTACATCCCAGTATTGGGATTGTTTCC-3′
PlCalS10 PlCalS10-1 F: 5′-ATGTCTGGGGTTTACGATAATTGGGA-3′
R: 5′-TAGCCTTGAAAGAGCCATGCCTCT-3′
PlCalS10-2 F: 5′-GTAGAAAGTTTTCTGGACGTCCTGC-3′
R: 5′-ATCATACCACGAACTGTCCTCGCC-3′
PlCalS10-3 F: 5′-TCAAGATAGCTCTCGGGATGCCC-3′
R: 5′-CAGTGCTGTGTTACCTAACAGTTTAG-3′
PlCalS10-4 F: 5′-CTTATATGGAAGAGCTTACCTGGCTTTCT-3′
R: 5′-TTAGGTTTGCTGGTTAGCTTTGTTTCCAG-3′
PlCalS11 PlCalS11-1 F: 5′-ATGAGTACTATGAGACAACGACCTCC-3′
R: 5′-TACTTGACAGCTGCTCCTCCG-3′
PlCalS11-2 F: 5′-CAACAGCTAAGGCTTAGGTTTCAGTTC-3′
R: 5′-CACCCCTAGTAAAAATAATGGCATGG-3′
PlCalS11-3 F: 5′-AGATATTCCGAATCAGGTTGCCC-3′
R: 5′-TTAATTTGATCGTTTGCCAGTGAGAATGC-3′
PlCalS12 PlCalS12-1 F: 5′-ATGAGCCTACGCCAGCGTCC-3′
R: 5′-CATTTAACAGCTGCTCCTCCGG-3′
PlCalS12-2 F: 5′-AGTTGAGGCTGAGATTCCAGTTCTTTG-3′
R: 5′-GCAGACATAAACCAGGCAAGTGAAGA-3′
PlCalS12-3 F: 5′-AATATAAAACCTACTATGGTATCCGGAAGC-3′
R: 5′-TTACAACTCCACCTTGGATTTTTTTCC-3′

Table 2

Primers used for qRT-PCR"

基因 Gene name 引物序列 Primer sequence (5′-3′) 退火温度 Annealing temperature (℃)
PlCalS1 F: 5′-TTCAGCTGCAGCATGGGTTA-3′
R: 5′-CTCGAGGAATCGGCGAATGA-3′
52
54
PlCalS2 F: 5′-AGCTCTTGTGAAGGCTGCTT-3′
R: 5′-AAGCCTTCGCCACGAGTAAA-3′
52
52
PlCalS3 F: 5′-ATGAGCGTGCACTGACAGAA-3′
R: 5′-GCAGCTTCGCCCCAAATAAG-3′
52
54
PlCalS5 F: 5′-GCCGCTATAGTGTTCCCTCC-3′
R: 5′-AGGCTTTCCCTCTCCGATCT-3′
56
54
PlCalS9 F: 5′-CGGGGGCTTTTATGGACACT-3′
R: 5′-GAGGCCATTGAACCAAGGGA-3′
54
54
PlCalS10 F: 5′-TTGACGACTGGACGAGTTGG-3′
R: 5′-GTACAACCCACGAGAAGCCA-3′
54
54
PlCalS11 F: 5′-GCTACAGCTCGCGTCACTAT-3′
R: 5′-GCGAAGCTCTTATGCTGCAC-3′
54
54
PlCalS12 F: 5′-TCCCTTCGATTCCCTGAGGT-3′
R: 5′-GGACGTTGTCGCGTTGAAAA-3′
54
52
β-Tubulin F: 5′-TGAGCACCAAAGAAGTGGACGAAC-3′
R: 5′-CACACGCCTGAACATCTCCTGAA-3′
57
57

Fig. 1

Pollen germination and pollen tube growth observation of P. lactiflora × P. lactiflora (×10) Pg: Pollen germination; Cs: Callose synthetase: Pt: Pollen tube. The same as below"

Fig. 2

Pollen germination and pollen tube growth observation of P. lactiflora × P. suffruticosa (×10)"

Fig. 3

Changes of callose content in stigmas after pollination"

Fig. 4

Changes of β-1,3-GA content in stigmas after pollination"

Fig. 5

Changes of ABA content in stigmas after pollination"

Fig. 6

Expression analysis of CalS gene in the stigma transcriptome of Paeonia lactiflora PL0101, PL0102, PL0103: Three biological replicates of P. lactiflora stigma sequencing samples that had been selfed for 24 h; PL0201, PL0202, PL0203: Three replicates of 24 h stigmata were hybridized; PL0301, PL0302, PL0303: Three replicates of 36 h stigmata were hybridized"

Table 3

Physicochemical properties of PlCalS proteins"

基因名称
Gene names
预测分子式
Predicted molecular formula
编码氨基酸数目
Number of encoded amino acids
原子总数
Total number of atoms
理论等电点
Theoretical isoelectric point
不稳定系数
Instability coefficient
总平均亲水性
GRAVY
亚细胞定位预测
Prediction of subcellular localization
PlCalS1 C10286H15925N2695O2804S78 1946 31788 9.10 39.61 -0.101 内质网 Endoplasmic reticulum
PlCalS2 C9278H14324N2408O2498S75 1745 28583 9.10 40.71 -0.050 内质网 Endoplasmic reticulum
PlCalS3 C10334H15954N2702O2802S78 1951 31870 9.12 42.01 -0.097 内质网 Endoplasmic reticulum
PlCalS5 C10089H15587N2647O2739S79 1915 31141 8.95 42.27 -0.024 内质网 Endoplasmic reticulum
PlCalS9 C10048H15526N2612O2766S68 1910 31020 7.99 36.40 -0.001 内质网 Endoplasmic reticulum
PlCalS10 C9973H15397N2607O2748S68 1903 30793 8.45 38.86 0.009 内质网 Endoplasmic reticulum
PlCalS11 C9515H14625N2499O2549S62 1782 29250 9.13 41.37 -0.007 内质网 Endoplasmic reticulum
PlCalS12 C9547H14660N2500O2564S56 1780 29327 8.97 38.48 -0.030 内质网 Endoplasmic reticulum

Fig. 7

Conservative motif analysis of PlCalS protein in Paeonia lactiflora"

Fig. 8

Phylogenetic analysis of CalS family in P. lactiflora and other plants"

Fig. 9

The relative expression level of PlCalS in the stigmas of self-cross and hybridization in different periods"

Fig. 10

Amino acid sequence alignment of PlCalS5 with other species"

Fig. 11

Phylogenetic tree of PlCalS5 and the known CalS5 in the other plants species"

Fig. 12

Expression of PlCalS5 induced by different concentrations of ABA A: 10 μmol·L-1ABA; B: 100 μmol·L-1ABA"

[1]
JI X T, YUAN Y P, BAI Z Z, WANG M L, NIU L X, SUN D Y. PlZFP mediates the combinatorial interactions of abscisic acid with gibberellin and ethylene during flower senescence in cut herbaceous peony. Postharvest Biology and Technology, 2023, 195: 112130.

doi: 10.1016/j.postharvbio.2022.112130
[2]
ZHANG C J, SHEN J J, WANG C, WANG Z Y, GUO L L, HOU X G. Characterization of PsmiR319 during flower development in early- and late-flowering tree peonies cultivars. Plant Signaling & Behavior, 2022, 17(1): 2120303.
[3]
万映伶, 朱梦婷, 刘爱青, 金亦佳, 刘燕. 中国观赏芍药表型多样性解析与资源评价. 中国农业科学, 2022, 55(18): 3629-3639. doi: 10.3864/j.issn.0578-1752.2022.18.012.

doi: 10.3864/j.issn.0578-1752.2022.18.012
WAN Y L, ZHU M T, LIU A Q, JIN Y J, LIU Y. Phenotypic diversity analysis of Chinese ornamental herbaceous peonies and its germplasm resource evaluation. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639. doi: 10.3864/j.issn.0578-1752.2022.18.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.18.012
[4]
王慧娟, 符真珠, 李艳敏, 蒋卉, 高杰, 张和臣. 观赏芍药杂交育种研究进展. 北方园艺, 2021(16): 144-149.
WANG H J, FU Z Z, LI Y M, JIANG H, GAO J, ZHANG H C. Research progress on the crossbreeding of ornamental herbaceous peony. Northern Horticulture, 2021(16): 144-149. (in Chinese)
[5]
郝津藜, 董晓晓, 袁涛. 四种药剂柱头处理对芍药属远缘杂交授粉结实率的影响. 中国农业大学学报, 2019, 24(1): 40-45.
HAO J L, DONG X X, YUAN T. Effects of four stigma treatments on the seed-setting rate of Paeonia distant hybridization. Journal of China Agricultural University, 2019, 24(1): 40-45. (in Chinese)
[6]
YANG Y, SUN M, LI S S, CHEN Q H, TEIXEIRA DA SILVA J A, WANG A J, YU X N, WANG L S. Germplasm resources and genetic breeding of Paeonia: a systematic review. Horticulture Research, 2020, 7: 107.

doi: 10.1038/s41438-020-0332-2
[7]
梁长安, 王二强, 韩鲲, 王若晗, 卢林. 简述伊藤杂种的来源及与牡丹的异同点和应用. 现代园艺, 2022, 45(7): 65-67.
LIANG C A, WANG E Q, HAN K, WANG R H, LU L. The origin of ITO hybrid, its similarities and differences with peony and its application are briefly described. Xiandai Horticulture, 2022, 45(7): 65-67. (in Chinese)
[8]
刘建鑫, 于晓南. 芍药与牡丹远缘杂交花粉萌发与花粉管生长行为观察. 北京林业大学学报, 2016, 38(9): 80-86.
LIU J X, YU X N. Ultrastructural investigations of Paeonia pollen activation and pollen tube growth after intersectional hybridization. Journal of Beijing Forestry University, 2016, 38(9): 80-86. (in Chinese)
[9]
马翔龙, 吴敬需, 刘少华. 伊藤牡丹发展现状与展望. 中国花卉园艺, 2018(16): 28-31.
MA X L, WU J X, LIU S H. Development status and prospect of Ito peony. China Flowers & Horticulture, 2018(16): 28-31. (in Chinese)
[10]
律春燕, 王雁, 朱向涛, 李艳华. 黄牡丹与芍药组间杂交花粉与柱头识别的解剖学研究. 西北植物学报, 2009, 29(10):1988-1994.
C Y, WANG Y, ZHU X T, LI Y H. Anatomical studies on pollen-stigma interaction in intersectional cross of Paeonia lutea and Paeonia lactiflora. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(10):1988-1994. (in Chinese)
[11]
王雪玲. 芍药牡丹组间远缘杂交及‘凤丹’胚培养研究[D]. 郑州: 河南农业大学, 2014.
WANG X L. Study on distant hybridization between Paeonia lactiflora and Paeonia suffruticosa and embryo culture of' Fengdan'[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese)
[12]
张佼蕊, 贺丹, 何松林, 谢栋博, 李朝梅, 王政, 刘艺平. 芍药PlSPL3基因的克隆与表达分析. 江苏农业学报, 2020, 36(6): 1537-1542.
ZHANG J R, HE D, HE S L, XIE D B, LI C M, WANG Z, LIU Y P. Cloning and expression analysis of PlSPL3 gene from Paeonia lactiflora. Jiangsu Journal of Agricultural Sciences, 2020, 36(6): 1537-1542. (in Chinese)
[13]
王冲, 贺卫丽, 张伟, 雷家军. 亚洲百合与东方百合远缘杂交花粉管生长荧光观察及胚培养. 北方园艺, 2018(10): 88-96.
WANG C, HE W L, ZHANG W, LEI J J. Fluorescence observation of pollen tube growth and embryo culture from distant hybridization between Asiatic and oriental lily cultivars. Northern Horticulture, 2018(10): 88-96. (in Chinese)
[14]
解玮佳, 宋杰, 唐路瑶, 彭绿春, 李世峰, 王继华. 高山杜鹃‘XXL’与蓝果杜鹃的杂交亲和性. 分子植物育种, 2023, 21(2): 582-588.
XIE W J, SONG J, TANG L Y, PENG L C, LI S F, WANG J H. Cross compatibility of the cross between Rhododendron’XXL’and R. cyanocarpum. Molecular Plant Breeding, 2023, 21(2): 582-588. (in Chinese)
[15]
KOU X B, CAO P, HE Q K, WANG P, ZHANG S L, WU J Y. PbrROP1/2-elicited imbalance of cellulose deposition is mediated by a CrRLK1L-ROPGEF module in the pollen tube of Pyrus. Horticulture Research, 2022, 9: uhab034.
[16]
SEALE M. Callose deposition during pollen development. Plant Physiology, 2020, 184(2): 564-565.

doi: 10.1104/pp.20.01143 pmid: 33889996
[17]
CAO P, TANG C, WU X, QIAN M, LV S Z, GAO H R, QIAO X, CHEN G D, WANG P, ZHANG S L, WU J Y. PbrCalS5, a callose synthase protein, is involved in pollen tube growth in Pyrus bretschneideri. Planta, 2022, 256(2): 22.

doi: 10.1007/s00425-022-03931-1
[18]
于晓艳, 邢树堂, 赵兰勇. 玫瑰与月季种间杂交障碍原因分析. 中国农业科学, 2014, 47(15): 3112-3120. doi: 10.38648.issn.0578-1752.2014.15.021.

doi: 10.3864/j.issn.0578-1752.2014.15.021
YU X Y, XING S T, ZHAO L Y. Analysis on the barriers of interspecific hybridization BetweenRosa rugosa andRosa hybrid. Scientia Agricultura Sinica, 2014, 47(15): 3112-3120. doi: 10.38648.issn.0578-1752.2014.15.021. (in Chinese)

doi: 10.38648.issn.0578-1752.2014.15.021
[19]
ÇETINBAŞ-GENÇ A, CAI G, DEL DUCA S, VARDAR F, ÜNAL M. The effect of putrescine on pollen performance in hazelnut (Corylus avellana L.). Scientia Horticulturae, 2020, 261: 108971.

doi: 10.1016/j.scienta.2019.108971
[20]
GÓMEZ J F, TALLE B, WILSON Z A. Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology, 2015, 57(11): 876-891.

doi: 10.1111/jipb.12425
[21]
XU T, ZHANG C, ZHOU Q, YANG Z N. Pollen wall pattern in Arabidopsis. Science Bulletin, 2016, 61(11): 832-837.

doi: 10.1007/s11434-016-1062-6
[22]
ZÁVESKÁ DRÁBKOVÁ L, HONYS D. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development. PLoS ONE, 2017, 12(11): e0187331.
[23]
DONG X Y, HONG Z L, SIVARAMAKRISHNAN M, MAHFOUZ M, VERMA D P S. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant Journal, 2005, 42(3): 315-328.

doi: 10.1111/tpj.2005.42.issue-3
[24]
ABERCROMBIE J, O’MEARA B, MOFFATT A, WILLIAMS J. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. EvoDevo, 2011, 2(1): 14.

doi: 10.1186/2041-9139-2-14 pmid: 21722365
[25]
康希泉, 亓帅, 臧德奎, 郑林, 徐宗大, 邢树堂, 于晓艳. 玫瑰β-l,3-葡聚糖合成酶基因(RrCalS)克隆与生物信息学分析. 山东林业科技, 2019, 49(2): 8-11, 22.
KANG X Q, QI S, ZANG D K, ZHENG L, XU Z D, XING S T, YU X Y. Cloning and bioinformatics analysis of Rosa rugosa β-1, 3-glucan synthase gene (RrCalS). Journal of Shandong Forestry Science and Technology, 2019, 49(2): 8-11, 22. (in Chinese)
[26]
WU S W, KUMAR R, ISWANTO A B B, KIM J Y. Callose balancing at plasmodesmata. Journal of Experimental Botany, 2018, 69(22): 5325-5339.
[27]
DONG X Y, HONG Z L, CHATTERJEE J, KIM S, VERMA D P S. Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 2008, 229(1): 87-98.

doi: 10.1007/s00425-008-0812-3 pmid: 18807070
[28]
张庆雯, 祁静静, 谢宇, 谢竹, 彭蕴, 李强, 彭爱红, 邹修平, 何永睿, 陈善春, 姚利晓. 黄龙病菌胁迫下‘锦橙’CsCalS5表达和胼胝质沉积的初步分析. 园艺学报, 2021, 48(2): 276-288.

doi: 10.16420/j.issn.0513-353x.2020-0282
ZHANG Q W, QI J J, XIE Y, XIE Z, PENG Y, LI Q, PENG A H, ZOU X P, HE Y R, CHEN S C, YAO L X. Preliminary analysis of CsCalS5 and callose deposition in Citrus sinensis infected with candidatus Liberibacter asiaticus. Acta Horticulturae Sinica, 2021, 48(2): 276-288. (in Chinese)
[29]
贺丹, 王雪玲, 高晓峰, 吕博雅, 刘艺平, 何松林. 牡丹芍药远缘杂交亲和性. 东北林业大学学报, 2014, 42(7): 65-68.
HE D, WANG X L, GAO X F, B Y, LIU Y P, HE S L. Intergeneric cross-compatibility between peonies. Journal of Northeast Forestry University, 2014, 42(7): 65-68. (in Chinese)
[30]
贺丹, 曹健康, 何松林, 张明星, 华超, 张佼蕊, 刘艺平. 芍药远缘杂交不亲和PlABCG15基因的克隆及表达分析. 河南农业大学学报, 2021, 55(6): 1074-1080, 1096.
HE D, CAO J K, HE S L, ZHANG M X, HUA C, ZHANG J R, LIU Y P. Cloning and expression analysis of distant hybridization incompatibility PlABCG15 gene from Paeonia lactiflora. Journal of Henan Agricultural University, 2021, 55(6): 1074-1080, 1096. (in Chinese)
[31]
贺丹, 张佼蕊, 何松林, 刘红利, 王政, 刘艺平. 芍药属远缘杂交不亲和PlABCF3基因克隆及表达分析. 华北农学报, 2020, 35(6): 81-89.

doi: 10.7668/hbnxb.20191499
HE D, ZHANG J R, HE S L, LIU H L, WANG Z, LIU Y P. Cloning and expression analysis of distant hybridization incompatibility PlABCF3gene from Paeonia. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 81-89. (in Chinese)
[32]
CHEN X Y, KIM J Y. Callose synthesis in higher plants. Plant Signaling & Behavior, 2009, 4(6): 489-492.
[33]
AMSBURY S, KIRK P, BENITEZ-ALFONSO Y. Emerging models on the regulation of intercellular transport by plasmodesmata- associated callose. Journal of Experimental Botany, 2018, 69(1): 105-115.

doi: 10.1093/jxb/erx337
[34]
FAN Y J, LIN S S, LI T T, SHI F J, SHAN G Y, ZENG F C. The plasmodesmata-located β-1, 3-glucanase enzyme PdBG4 regulates trichomes growth in Arabidopsis thaliana. Cells, 2022, 11(18): 2856.

doi: 10.3390/cells11182856
[35]
PERROT T, PAULY M, RAMÍREZ V. Emerging roles of β-glucanases in plant development and adaptative responses. Plants, 2022, 11(9): 1119.

doi: 10.3390/plants11091119
[36]
冯琪, 王鑫, 田琳, 赵艺璇, 张家培, 刘冬云. 鼠尾草属植物杂交亲和性探究. 河北师范大学学报(自然科学版), 2020, 44(3): 260-266.
FENG Q, WANG X, TIAN L, ZHAO Y X, ZHANG J P, LIU D Y. Study on the cross-compatibility of Salvia L. Journal of Hebei Normal University (Natural Science), 2020, 44(3): 260-266. (in Chinese)
[37]
李辛雷, 陈发棣, 赵宏波. 菊属植物远缘杂交亲和性研究. 园艺学报, 2008, 35(2): 257-262.
LI X L, CHEN F D, ZHAO H B. Compatibility of interspecific cross in Dendranthema genus. Acta Horticulturae Sinica, 2008, 35(2): 257-262. (in Chinese)
[38]
KANAOKA M M, SHIMIZU K K, XIE B, URBAN S, FREEMAN M, HONG Z L, OKADA K. KOMPEITO, an atypical Arabidopsis rhomboid-related gene, is required for callose accumulation and pollen wall development. International Journal of Molecular Sciences, 2022, 23(11): 5959.

doi: 10.3390/ijms23115959
[39]
SHI X, SUN X H, ZHANG Z G, FENG D, ZHANG Q, HAN L D, WU J X, LU T G. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant and Cell Physiology, 2015, 56(3): 497-509.

doi: 10.1093/pcp/pcu193 pmid: 25520407
[40]
NIU Q K, ZHANG P, SU S, JIANG B, LIU X W, LI C, YU T, YI H Y, TANG J, CAO M J. Characterization and expression analyses of callose synthase enzyme (cals) family genes in maize (Zea mays L.). Biochemical Genetics, 2022, 60(1): 351-369.

doi: 10.1007/s10528-021-10103-5
[41]
XIE B, WANG X M, HONG Z L. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis. Planta, 2010, 231(4): 809-823.

doi: 10.1007/s00425-009-1091-3
[42]
MBIZA N I T, HU Z W, ZHANG H R, ZHANG Y, LUO X C, WANG Y X, WANG Y, LIU T, LI J P, WANG X P, ZHANG J M, YU Y H. GhCalS5 is involved in cotton response to aphid attack through mediating callose formation. Frontiers in Plant Science, 2022, 13: 892630.

doi: 10.3389/fpls.2022.892630
[43]
SLEWINSKI T L, BAKER R F, STUBERT A, BRAUN D M. Tie- dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiology, 2012, 160(3): 1540-1550.

doi: 10.1104/pp.112.202473
[44]
YANG J, TIAN L, SUN M X, HUANG X Y, ZHU J, GUAN Y F, JIA Q S, YANG Z N. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiology, 2013, 162(2): 720-731.

doi: 10.1104/pp.113.214940
[45]
MA X F, WU Y, ZHANG G F. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. Journal of Plant Physiology, 2021, 260: 153388.

doi: 10.1016/j.jplph.2021.153388
[46]
XIA Z H, WEN B X, SHAO J, ZHANG T C, HU M M, LIN L, ZHENG Y P, SHI Z X, DONG X L, SONG J J, LI Y S, WU Y J, YUAN Y F, WU J Y, CHEN Q X, CHEN J Q. The transcription factor PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. Plant Physiology, 2023, 191(3): 1734-1750.

doi: 10.1093/plphys/kiad002 pmid: 36617219
[47]
张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春, 姚利晓. 植物胼胝质合成酶研究进展. 园艺学报, 2021, 48(4): 661-675.

doi: 10.16420/j.issn.0513-353x.2020-0379
ZHANG Q W, WANG Z H, QI J J, XIE Y, LEI T G, HE Y R, CHEN S C, YAO L X. The advances of callose synthase in plant. Acta Horticulturae Sinica, 2021, 48(4): 661-675. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2020-0379
[48]
LIU J L, DU H T, DING X, ZHOU Y D, XIE P F, WU J C. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Management Science, 2017, 73(12): 2559-2568.

doi: 10.1002/ps.2017.73.issue-12
[1] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[2] SHAO ChenBing,HUANG ZhiNan,BAI XueYing,WANG YunPeng,DUAN WeiKe. Identification, Systematic Evolution and Expression Analysis of HD-Zip Gene Family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004-1017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!