Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3168-3182.doi: 10.3864/j.issn.0578-1752.2023.16.010

• HORTICULTURE • Previous Articles     Next Articles

Mining Genes Related to Fruit Quality in Sweet Oranges Based on Specific Locus Amplified Fragment Sequencing

LI RenJing(), SHEN WanXia, ZHAO WanTong, CHENG Li, LI Pei, JIANG Dong()   

  1. Citrus Research Institute, Southwest University, Chongqing 400712
  • Received:2022-12-17 Accepted:2023-02-13 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】By using specific locus amplified fragment sequencing (SLAF-seq) sequencing method and combined with fixation indices analysis on different sweet orange populations, the candidate genes related with some excellent traits in sweet orange were mined, so as to provide some candidate genes for the further molecular breeding in sweet orange. 【Method】SLAF-seq technology was used to genotype 240 sweet orange germplasm resources, which represented extensive genetic diversity and from different geographical origins accessions preserved in the National Citrus Germplasm Repository in Beibei of Chongqing. The genomic SNP genotype data were obtained using the sweet orange genome as the reference, and the Fst and XP-CLR values between different subpopulations were calculated. 【Result】A total of 497.82 Mb-reads were obtained by sequencing 240 sweet oranges accessions with SLAF-seq technology, after the sequencing reads were mapped on to the reference genome by BWA software, and a total of 1 467 968 SNPs were identified by GATK and samtools. The Fst and XP-CLR indices were used to screen out candidate genes related to three traits, including fruit navel occurrence, fruit weight, and titratable acid content. Those genes adjacent to the selected SNPs were called. The result showed that orange1.1G044639m and orange1.1g023641m which annotated auxin efflux vector were related to the formation of navel in sweet orange. SNP in orange1.1G023641m which encoded E3 ubiquitin ligase had the highest Fst score between two different single-fruit weight population, and orange1.1G046891m might affect fruit weight by regulating carbohydrate formation; orange1.1G011684m encoding dihydrolipoamide transacetylase of PDH, and the SNP caused a nonsynonymous mutation in its CDS region, which might determine the citric acid content in fruit; orange1.1G034502m encodes Serine/threonine protein kinase, annotated as phosphorylation dephosphorylation function also related with the citric acid content in fruit. 【Conclusion】In this study, the Fst indices were used to screen six candidate genes associated with three fruit traits in sweet orange by using SNPs from SLAF-seq data. Finally, the relevant genes were screened out for three horticultural traits, including navel occurrence, fruit weight and titratable acid content, and the identified candidate genes should be giving further investigation to explore their regulation mechanism in these traits.

Key words: SLAF-seq, Fst, XP-CLR, sweet orange, fruit weight, titratable acids content, fruit navel occurrence

Table 1

240 accessions of sweet oranges used in this study"

编号 Code 材料名称 Common name 编号 Code 材料名称 Common name
1 橘园甜橙 Ju Yuan Sweet Orange 40 广东选育雪柑 Xue Gan (Guangdong Selection)
2 塔罗科血橙(Thermal) Tarocco Thermal Blood Orange 41 眉红橙 Mei Hong Navel Orang
3 塔罗科血橙(Bream) Tarocco Bream Blood Orange 42 眉红脐橙 Mei Hong Navel Orang
4 瓦尼利亚甜橙 Vaniglia Sanguigno Acidless Sweet Orange 43 金儿柑 Jin Er Gan
5 嘉法甜橙 Jaffa Sweet Orange 44 脐橙 Navel Orange
6 利马甜橙 Lima Sweet Orange 45 桃叶橙18号Peach Leaf Sweet Orange No.18
7 哈资3号 Hua Zhi No.3 46 宜园3号 Yi Yuan Jin Cheng No.3
8 威尼 Wheeny 47 埃及2号糖橙 Egypt Sweet Orange No.2
9 脐橙 Navel Orange 48 埃及2号甜橙 Egypt Sweet Orange No.2
10 猴橙 Hou Cheng 49 椭圆哈姆林 Hamlin (Tuo Yuan)
11 甜橙 Sweet Orange 50 江北梅柑 Jiang Bei Mei Gan
12 利马甜橙 Lima Sweet Orange 51 克拉斯特脐橙 Cluster Navel
13 罗布脐橙 Rhobs El Arsa 52 云南黄果Yun Nan Huang Guo
14 澳大利亚红 Australian Red 53 秭归2号甜橙 Zi Gui Tian Cheng No.2
15 意大利 Italian 54 日本柳叶橙 Liu Ye Cheng (Japan)
16 晚红8号 Wan Hong No.8 55 兴国甜橙 Xing Guo Sweet Orange
17 普通甜橙 Sweet Orange 56 江津柳叶橙 Liu Ye Cheng (Jiangjin)
18 纽荷尔脐橙 Newhall Navel Orange 57 凤梨甜橙 Pineapple Sweet Orange
19 夏金脐橙 Summer Gold Navel Orange 58 哈姆林 Hamlin
20 脐橙 Navel Orange 59 帕森布朗 Parson Brown
21 脐橙 Navel Orange 60 皱皮柑 Zhou Pi Gan
22 脐橙 Navel Orange 61 埃及1号甜橙 Egypt Sweet Orange No.1
23 脐橙 Navel Orange 62 早熟雪柑 Early Xue Gan
24 晚熟甜橙 Late Season Sweet Orange 63 福本脐橙 Fukumoto Navel Orange
25 普通甜橙 Sweet Orange 64 小叶先锋橙 Xiao Ye Xian Feng Cheng
26 塔罗科血橙 Tarocco Blood Orange 65 松林1号 Song Lin No.1
27 类橘脐橙 Mandarin Navel Orange 66 云南高尖黄果 Yun nan Gao Jian Huang Guo
28 柳江甜橙 Liu Jiang Sweet Orange 67 花叶香橙 Hua Ye Xiang Cheng
29 宽皮桔 Mandarin 68 古巴花叶橙 Gu Ba Hua Ye Cheng
30 脐橙 Navel Orange 69 花叶锦橙 Variegated Jin Cheng
31 佩拉甜橙 Pera Sweet Orange 70 香水橙 Xiang Shui Cheng
32 夏橙 Valencia Sweet Orange 71 红毛橙 Hong Mao Cheng
33 夏橙 Valencia Sweet Orange 72 冰糖橙(仁5) Bing Tang Cheng (Ren No.5)
34 脐橙 Navel Orange 73 冰糖橙(仁4) Bing Tang Cheng (Ren No.4)
35 脐橙 Navel Orange 74 福贡甜橙 Fu Gong Tian Cheng
36 塔罗科血橙Tarocco Blood Orange 75 先锋橙4号 Xian Feng Cheng No.4
37 夏橙 Valencia Sweet Orange 76 津华橙 Jin Hua Cheng
38 夏橙 Valencia Sweet Orange 77 金山橙(广东) Jin Shan Cheng (Guangdong)
39 脐橙 Navel Orange 78 蓬安100号 Peng An No.100 Jin Cheng
79 梨橙2号 Pear Shape Sweet Orange No. 2 119 脐血橙 Washington Sanguine Blood Orange
80 纽荷尔 Newhall Navel Orange 120 脐血橙 Washington Sanguine Blood Orange
81 甜皮甜橙(西农) Tian Pi Sweet Orange (Xinong) 121 蜜奈夏橙 Midknight Valencia
82 索尔斯蒂安娜 Salustiano Orange 122 鲍威尔 Powell Navel Orange
83 零号甜橙 Sweet Orange No.0 123 路德红夏橙 Rhod Red Valencia Orange
84 巴西脐橙9号 Brasiliano Navel Orange No.9 124 奥林达夏橙 Olinda Valencia Orange
85 中育8号 Zhong Yu No.8 125 康拜尔夏橙 Campbell Valencia Orange
86 大红8号 Da Hong No.8 126 阿尔及尔夏橙 Algiers Valencia Orange
87 摩洛血橙 Moro Blood Orange 127 岛仔51甜橙 Dao Zai No.51 Sweet Orange
88 78-1 128 夏橙(珠心系) Valencia Nucellar
89 脐血橙5号(实生) Washington Sanguine (seedling No.5) 129 伏罗斯特夏橙(N.L) Frost Valencia Orange (N.L)
90 脐血橙3号(实生) Washington Sanguine (seedling No.3) 130 夏橙 Valencia
91 红肉暗柳橙 Pink Flesh An Liu Chen 131 刘金刚夏橙 Liu Jin Gang Valencia Orange
92 脐血橙2号(实生) Washington Sanguine (seedling No.2) 132 五月红51-13夏橙 Wu Yue Hong 51-13
93 脐血橙1号(实生) Washington Sanguine (seedling No.1) 133 五月红51-14夏橙 Wu Yue Hong 51-14
94 奥伐来血橙 Ovale Blood Orange 134 晚熟6号 Wan Shu No.6
95 红玉血橙 Ruby Blood Orange 135 晚脐 Late Navel Orange
96 塔罗科(valencia)Tarocco (valencia) 136 蓬安晚脐 Peng An Late Navel Orange
97 塔罗科(O.L) Tarocco (O.L) 137 晚熟脐橙 Late Navel Orange
98 塔罗科(Rosso Italy) Tarocco (Rosso Italy) 138 夏田脐橙 Summer Field Navel Orange
99 塔罗科(N.L) Tarocco (N.L) 139 早熟脐橙 Early Navel Orange
100 桑吉内劳血橙 Sanguinello 140 大三岛脐橙 Omishima Navel Orange
101 红江橙 Hong Jiang Cheng 141 丰脐 High Yield Navel Orange
102 脐血橙(2号) Washington Sanguine (No.2) 142 森田脐橙 Morita Navel Orange
103 脐血橙2号 Washington Sanguine No.2 143 吉田脐橙 Yoshida Navel Orange
104 洛比血橙(O.L) Ruby Blood Orange (O.L.) 144 白柳脐橙 Shirayanagi Navel Orange
105 洛比血橙(澳) Ruby Blood Orange (AUS) 145 福本脐橙Fukumoto Navel Orange
106 木索血橙 Aroncio Tarocco Dal Muso Blood Orange 146 铃木脐橙 Suzuki Navel Orange
107 马尔他斯血橙 Maltese Blood Orange 147 费希尔脐橙 Fisher Navel Orange
108 靖县血橙 Jing Xian Blood Orange 148 伏罗斯特脐橙 Frost Navel Orange
109 血橙 Blood Orange 149 阿特伍德脐橙 Atwood Navel Orange
110 血橙 Blood Orange 150 锦红最甜 Jin Hong Bing Tang Cheng (Zui Tian)
111 实美橙 Shi Mei Cheng 151 锦红大果 Jin Hong Bing Tang Cheng (Da Guo)
112 沃克曼脐橙 Workman Navel Orange 152 锦红最红 Jin Hong Bing Tang Cheng (Zui Hong)
113 阿华6-2 A Hua 6-2 153 林娜脐橙(西) Navelina Navel Orange (Xi)
114 宜红橙 Yi Hong Orange 154 林娜脐橙(O.L)Navelina Navel Orange (O.L)
115 卡特尼拉 Cadenera 155 纽荷尔脐橙 Newhall Navel Orange
116 早金 Early Gold Sweet Orange 156 卡尔特脐橙 Carter Navel Orange
117 班菲尔晚脐橙 Barnfield Late Navel Orange 157 卡尔特(美国) Carter Navel Orange (USA)
118 橙固酸橙 Cheng Gu Sour Orange 158 清家脐橙 Seike Navel Orange
159 哈姆林甜橙 Hamlin 200 仑头橙 Lun Tou Cheng
160 奉节4-21 Feng Jie 4-21 201 早熟甜橙(万县) Early Sweet Orange (Wanxian)
161 柳叶橙 Willow Leaf Sweet Orange 202 开县无核甜橙 Kai Xian Seedless Tian Cheng
162 古巴柳叶橙 Liu Ye Cheng (Cuba) 203 1号安江大红甜橙 Da Hong Tian Cheng No.1
163 印子柑 Yin Zi Gan 204 卡特尼拉(联合国) Cadenera Sweet Orange (U.N.)
164 冰糖橙 Bing Tang Cheng 205 卡特尼拉(摩洛哥) Cadenera Sweet Orange (Morocco)
165 冰糖柑53-3 Bing Tang Gan 53-3 206 卡特尼拉(珠心系) Cadenera Nucellar Sweet Orange
166 冰糖柑53-93 Bing Tang Gan 53-93 207 红毛橙 Hong Mao Cheng
167 冰糖柑53-94 Bing Tang Gan 53-94 208 8045甜橙 Sweet Orange 8045
168 冰糖柑53-4 Bing Tang Gan 53-4 209 桃叶橙8号 Tao Ye Cheng No.8
169 汤姆逊 Thompson Navel Orange 210 广西香水橙 Guang Xi Xiang Shui Cheng
170 华脐214 Washinton Navel Orange No.214 211 朱砂柑 Zhu Sha Gan
171 石棉脐橙 Shi Mian Navel Orange 212 新会红橙 Xin Hui Hong Cheng
172 汤姆逊脐橙(美N.L) Thompson Navel Orange (USA N.L) 213 义安橙 Yi An Cheng
173 实生华脐 Washington Navel Orange (Seedling) 214 乔伯橙 Joppa Sweet Orange
174 华脐 Washinton Navel Orange 215 C3
175 突尼斯脐橙 Tunisia Navel Orange 216 籍发橙 Jaffa Sweet Orange
176 埃及脐橙 Egypt Navel Orange 217 八棱甜橙 Ba Leng Tian Cheng
177 罗脐 Robertson Navel Orange 218 黄皮甜橙 Huang Pi Sweet Orange
178 鲁滨逊脐橙 Robertson Navel Orange 219 桔红橙 Ju Hong Cheng
179 金堂脐橙 Early Navel Orange (Jintang) 220 武夷橙 Wu Yi Cheng
180 新华1号脐橙 Xin Hua Navel Orange No.1 221 宜园161 Yi Yuan 161 Jin Cheng
181 锦橙(铜水72-1) Jin Cheng (Tongshui 72-1) 222 9号桐子柑 Tong Zi Gan No.9
182 开县72-1锦橙 Jin Cheng (Kaixian 72-1) 223 桐子柑57-36Tong Zi Gan 57-36
183 72-12先锋橙 Xian Feng Cheng 72-12 224 化州橙(实生) Hua Zhou Cheng (Seedling)
184 S20先锋橙 Xian Feng Cheng (S20) 225 化州橙(O.L) Hua Zhou Cheng (O.L)
185 S26锦橙Jin Cheng (S26) 226 红橘广柑 Hong Ju Guang Gan
186 鹅蛋柑8号 E Dan Gan No.8 227 改良橙 Gai Liang Cheng
187 447锦橙 447 Jin Cheng 228 重瓣甜橙 Chong Ban Tian Cheng
188 梨形甜橙 Pear Shape Sweet Orange 229 槾先橙 Man Xian Cheng
189 雪柑(N.L) Xue Gan (N.L) 230 广橘甜橙 Guang Ju Tian Cheng
190 雪柑(一区) Xue Gan (Yiqu) 231 卡拉卡拉红肉脐橙 Cara Cara Navel Orange
191 汉源无核甜橙 Han Yuan Seedless Sweet Orange 232 晚棱脐橙 Lane's Late Navel Orange
192 无核甜橙 Seedless Sweet Orange 233 塔罗科血橙(新系) Tarocco New Line
193 大萼甜橙(万县) Da E Tian Cheng 234 8号血橙 Blood Orange No.8
194 深红皮甜橙 Shen Hong Pi Tian Cheng 235 塔罗科血橙 Tarocco Blood Orange
195 深红皮甜橙 Shen Hong Pi Tian Cheng 236 瓦尼利亚甜橙 Vaniglia Sanguigno Acidless Sweet Orange
196 辰溪早熟甜橙 Early Tian Cheng (Chenxi) 237 夏橙 Valencia Sweet Orange
197 南充单胚甜橙 Nan Chong Dan Pei Tian Cheng 238 95-1奉晚脐橙 Feng Jie Late Navel Orange (95-1)
198 普通甜橙(7-26) Sweet Orange (72-6) 239 大果锦橙 Large Fruit Jing Chen
199 开县薄皮甜橙 Kai Xian Bao Pi Tian Cheng 240 93-3脐橙 Navel Orange 93-3

Table 2

qPCR primers"

引物名称
Primer name
正向引物序列
Forward primer sequence
反向引物序列
Reverse primer sequence
orange1.1g011684m GTTGGAGCATCAAAGCCAAT ATTCGGTGATCAGCGGTTAC
orange1.1g034502 ACGCTAGTGATGGGAAATTCTCA AAGGTTAAGCTTGTTGTCGGAA
β-Actin CCCCATCGTTACCGTCCAG CGCCTTGCCAGTTGAATATCC

Fig. 1

The principal component analysis of 240 sweet orange accessions"

Fig. 2

Population structure analysis of 240 sweet orange accessions Blue refer to Q1, Red refer to Q2, Green refer to Q3"

Fig. 3

Genome-wide Fst values (A) and XP-CLR selective sweep analysis (B) of fruit navel occurrence in two sweet orange populations"

Fig. 4

Genome-wide Fst values (A) and XP-CLR selective sweep analysis (B) of fruit weight in two different sweet orange populations"

Fig. 5

Genome-wide Fst values (A) and XP-CLR selective sweep analysis (B) calculated using two high-acid and low-acid sweet orange populations"

Fig. 6

Content and change trend of TA in the juice of six sweet orange cultivars"

Fig. 7

Relative expression of orange1.1g034502m during orange fruit development"

Fig. 8

Relative expression of orange1.1g011684m during fruit development for six sweet orange cultivars"

Fig. 9

The mutation occurring in orange1.1g011684 resulted in amino acid G change to S"

[1]
何发. 酸橙与甜橙的遗传起源及柑橘糖酸变化初探[D]. 武汉: 华中农业大学, 2017.
HE F. Genetic origin of lime and sweet orange and preliminary study on the changes of sugar and acid in citrus[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[2]
SUN X W, LIU D Y, ZHANG X F, LI W B, LIU H, HONG W G, JIANG C B, GUAN N, MA C X, ZENG H P, XU C H, SONG J, HUANG L, WANG C M, SHI J J, WANG R, ZHENG X H, LU C Y, WANG X W, ZHENG H K. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high- throughput sequencing. PLoS ONE, 2013, 8(3): e58700.

doi: 10.1371/journal.pone.0058700
[3]
LI C X, LIU M X, SUN F J, ZHAO X Y, HE M Y, LI T S, LU P, XU Y. Genetic divergence and population structure in weedy and cultivated broomcorn millets (Panicum miliaceum L.) revealed by specific-locus amplified fragment sequencing (SLAF-seq). Frontiers in Plant Science, 2021, 12: 688444.

doi: 10.3389/fpls.2021.688444
[4]
MAO K S, WANG Y, LIU J Q. Evolutionary origin of species diversity on the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 2021, 59(6): 1142-1158.

doi: 10.1111/jse.v59.6
[5]
WANG S W, WANG C Y, FENG X B, ZHAO J X, DENG P C, WANG Y J, ZHANG H, LIU X L, LI T D, CHEN C H, WANG B T, JI W Q. Molecular cytogenetics and development of St-chromosome- specific molecular markers of novel stripe rust resistant wheat- Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines. BMC Plant Biology, 2022, 22(1): 111.

doi: 10.1186/s12870-022-03496-x
[6]
YANG G T, BOSHOFF W H P, LI H W, PRETORIUS Z A, LUO Q L, LI B, LI Z S, ZHENG Q. Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat- Thinopyrum ponticum translocation line WTT34. Theoretical and Applied Genetics, 2021, 134(5): 1587-1599.

doi: 10.1007/s00122-021-03796-0
[7]
JING Y, TENG W L, QIU L J, ZHENG H K, LI W B, HAN Y P, ZHAO X. Genetic dissection of soybean partial resistance to sclerotinia stem rot through genome wide association study and high throughout single nucleotide polymorphisms. Genomics, 2021, 113(3): 1262-1271.

doi: 10.1016/j.ygeno.2020.10.042 pmid: 33689785
[8]
NADEEM M, CHEN A D, HONG H L, LI D D, LI J J, ZHAO D, WANG W, WANG X B, QIU L J. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). Journal of Integrative Plant Biology, 2021, 63(6): 1054-1064.

doi: 10.1111/jipb.v63.6
[9]
ZHUO X K, ZHENG T C, LI S Z, ZHANG Z Y, ZHANG M, ZHANG Y C, AHMAD S, SUN L D, WANG J, CHENG T R, ZHANG Q X. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. Horticulture Research, 2021, 8: 131.

doi: 10.1038/s41438-021-00573-4
[10]
ZOU J N, LI W J, ZHANG Y T, SONG W, JIANG H P, ZHAO J Y, ZHAN Y H, TENG W L, QIU L J, ZHAO X, HAN Y P. Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping. Theoretical and Applied Genetics, 2021, 134(8): 2699-2709.

doi: 10.1007/s00122-021-03855-6
[11]
CAI H C, WANG Q, GAO J D, LI C Y, DU X M, DING B P, YANG T Z. Construction of a high-density genetic linkage map and QTL analysis of morphological traits in an F1 Malus domestica  ×   Malus baccata hybrid. Physiology and Molecular Biology of Plants, 2021, 27(9): 1997-2007.

doi: 10.1007/s12298-021-01069-0
[12]
PALANGA K K, JAMSHED M, RASHID M H O, GONG J W, LI J W, IQBAL M S, LIU A Y, SHANG H H, SHI Y Z, CHEN T T, GE Q, ZHANG Z, DILNUR T, LI W J, LI P T, GONG W K, YUAN Y L. Quantitative trait locus mapping for Verticillium wilt resistance in an upland cotton recombinant inbred line using SNP-based high density genetic map. Frontiers in Plant Science, 2017, 8: 382.
[13]
ZHANG Z, GE Q, LIU A Y, LI J W, GONG J W, SHANG H H, SHI Y Z, CHEN T T, WANG Y L, PALANGA K K, MUHAMMAD J, LU Q W, DENG X Y, TAN Y N, LIU R X, ZOU X Y, RASHID H, IQBAL M S, GONG W K, YUAN Y L. Construction of a high-density genetic map and its application to QTL identification for fiber strength in upland cotton. Crop Science, 2017, 57(2): 774-788.

doi: 10.2135/cropsci2016.06.0544
[14]
YU Y, ZHANG X J, YUAN J B, LI F H, CHEN X H, ZHAO Y Z, HUANG L, ZHENG H K, XIANG J H. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Scientific Reports, 2015, 5: 15612.

doi: 10.1038/srep15612
[15]
WANG R, FANG Y N, WU X M, QING M, LI C C, XIE K D, DENG X X, GUO W W. The miR399-CsUBC24 module regulates reproductive development and male fertility in Citrus. Plant Physiology, 2020, 183(4): 1681-1695.

doi: 10.1104/pp.20.00129
[16]
张亚飞, 彭洁, 朱延松, 杨胜男, 王旭, 赵婉彤, 江东. 柑橘CCD基因家族鉴定及CcCCD4a对果肉颜色的影响. 中国农业科学, 2020, 53(9): 1874-1889. doi: 10.3864/j.issn.0578-1752.2020.09.014.

doi: 10.3864/j.issn.0578-1752.2020.09.014
ZHANG Y F, PENG J, ZHU Y S, YANG S N, WANG X, ZHAO W T, JIANG D. Genome wide identification of CCD gene family in Citrus and effect of CcCCD4a on the color of Citrus flesh. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889. doi: 10.3864/j.issn.0578-1752.2020.09.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.09.014
[17]
HUANG D Q, ZHAO Y H, CAO M H, QIAO L, ZHENG Z L. Integrated systems biology analysis of transcriptomes reveals candidate genes for acidity control in developing fruits of sweet orange (Citrus sinensis L. Osbeck). Frontiers in Plant Science, 2016, 7: 486.
[18]
WANG L, HUANG Y, LIU Z A, HE J X, JIANG X L, HE F, LU Z H, YANG S Z, CHEN P, YU H W, ZENG B, KE L J, XIE Z Z, LARKIN R M, JIANG D, MING R, BUCKLER E S, DENG X X, XU Q. Somatic variations led to the selection of acidic and acidless orange cultivars. Nature Plants, 2021, 7(7): 954-965.

doi: 10.1038/s41477-021-00941-x pmid: 34140668
[19]
SHI C Y, HUSSAIN S B, YANG H, BAI Y X, KHAN M A, LIU Y Z. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Science, 2019, 289: 110288.

doi: 10.1016/j.plantsci.2019.110288
[20]
江东, 龚桂芝. 柑橘种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
JIANG D, GONG G Z. Descriptors and Data Standard for Citrus (Citrus spp.). Beijing: China Agriculture Press, 2006. (in Chinese)
[21]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[22]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[23]
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R, SUBGROUP 1 G P D P. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.

doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[24]
杨宇昕, 邹枨. 基于温带和热带玉米群体全基因组FST和XP-EHH的选择信号检测. 中国农业科学, 2019, 52(4): 579-590. doi: 10.3864/j.issn.0578-1752.2019.04.001.

doi: 10.3864/j.issn.0578-1752.2019.04.001
YANG Y X, ZOU C. Genome-wide detection of selection signal in temperate and tropical maize populations with use of FST and XP-EHH. Scientia Agricultura Sinica, 2019, 52(4)579-590. doi: 10.3864/j.issn.0578-1752.2019.04.001. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.04.001
[25]
NIE J, SHAN N, LIU H, YAO X H, WANG Z W, BAI R X, GUO Y C, DUAN Y, WANG C L, SUI X L. Transcriptional control of local auxin distribution by the CsDFB1-CsPHB module regulates floral organogenesis in cucumber. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(8): e2023942118.
[26]
PENG J L, CHEN R J. Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula. Plant Signaling & Behavior, 2011, 6(10): 1537-1544.
[27]
郑钧伦, 罗琼, 李子彤, 门淑珍. 蓖麻生长素外输载体PIN蛋白家族的生物信息学分析. 聊城大学学报(自然科学版), 2021, 34(5): 88-99.
ZHENG J L, LUO Q, LI Z T, MEN S Z. Bioinformatics analysis of the auxin efflux carrier PIN proteins of Ricinus communis L. Journal of Liaocheng University (Natural Science Edition), 2021, 34(5): 88-99. (in Chinese)
[28]
张永强. 番茄E3泛素连接酶基因SINA1的功能解析[D]. 武汉: 华中农业大学, 2017.
ZHANG Y Q. Functional analysis of tomato E3 ubiquitin ligase gene SINA1[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[29]
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.

doi: 10.1038/ng2014
[30]
姜颖, 曹言勇, 路运才, 唐保军, 王利锋, 李会勇. 拟南芥中RING型E3泛素连接酶基因AtGW2的克隆和功能分析. 植物遗传资源学报, 2011, 12(3): 448-454.

doi: 10.13430/j.cnki.jpgr.2011.03.019
JIANG Y, CAO Y Y, LU Y C, TANG B J, WANG L F, LI H Y. Cloning and functional analysis of Arabidopsis thaliana AtGW2, a RING-type E3 ubiquitin ligase protein. Journal of Plant Genetic Resources, 2011, 12(3): 448-454. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2011.03.019
[31]
顾建芹. 暗柳橙及其突变体红暗柳橙果实发育过程中糖酸组分的变化[D]. 武汉: 华中农业大学, 2007.
GU J Q. Changes of sugar and acid components during fruit development of dark orange and its mutant red and dark orange[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese)
[32]
DENG W, LUO K M, LI Z G, YANG Y W, HU N, WU Y. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta, 2009, 230(2): 355-365.

doi: 10.1007/s00425-009-0945-z
[33]
KATZ E, BOO K H, KIM H Y, EIGENHEER R A, PHINNEY B S, SHULAEV V, NEGRE-ZAKHAROV F, SADKA A, BLUMWALD E. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 2011, 62(15): 5367-5384.

doi: 10.1093/jxb/err197 pmid: 21841177
[34]
马璐琳, 段青, 杜文文, 张艺萍, 崔光芬, 贾文杰, 吴学尉, 王祥宁, 王继华. 泸定百合丝氨酸/苏氨酸蛋白激酶基因(LsS/TK)的克隆与表达分析. 分子植物育种, 2020, 18(18): 5925-5932.
MA L L, DUAN Q, DU W W, ZHANG Y P, CUI G F, JIA W J, WU X W, WANG X N, WANG J H. Cloning and expression analysis of a serine/threonine protein kinase gene (LsS/TK) in Lilium sargentiae. Molecular Plant Breeding, 2020, 18(18): 5925-5932. (in Chinese)
[1] CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963.
[2] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[3] LIU XiangYu, ZHANG YuShu, LIU Liu, LIU Shi, GAO Peng, WANG Di, WANG XueZheng. The QTL Analysis of Single Fruit Weight Associated Traits in Melon Based on CAPS Markers [J]. Scientia Agricultura Sinica, 2019, 52(9): 1601-1613.
[4] LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming. Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23 [J]. Scientia Agricultura Sinica, 2016, 49(20): 3927-3933.
[5] LI Na, YANG Xing-xing, DAI Su-ming, LI Rong-hua, JIANG Hang, LUO Yue-xiong, Alessandra Gentile, DENG Zi-niu. Establishment of Non-Destructive System for Fruit Quality Grading of ‘Bingtang’ Sweet Orange and Its Application on Packing Line [J]. Scientia Agricultura Sinica, 2016, 49(1): 132-141.
[6] SU Wen-jin, ZHAO Ning, LEI Jian, WANG Lian-jun, CHAI Sha-sha, YANG Xin-sun. SNP Sites Developed by Specific Length Amplification Fragment Sequencing (SLAF-seq) in Sweetpotato [J]. Scientia Agricultura Sinica, 2016, 49(1): 27-34.
[7] GE Hong-juan, LONG Gui-you, DAI Su-ming, LI Da-zhi, LI Na, DENG Zi-niu. The Influence of ‘Bingtang’ Sweet Orange or Citron C-05 on the Growth Characteristics of Xanthomonas axonopodis pv. citri [J]. Scientia Agricultura Sinica, 2015, 48(7): 1383-1391.
[8] YUE Wen-jun, ZHANG Fu-cang, LI Zhi-jun, WU Li-feng. Effects of Water and Nitrogen Coupling on Root Growth and Single Fruit Weight of Greenhouse Muskmelon [J]. Scientia Agricultura Sinica, 2015, 48(10): 1996-2006.
[9] YUE Qun-Hua, YUAN Jian-Long, HAO Fei, JIN Mu-Zi, WANG Jing-Yuan, YANG Wen-Liang, LIU Dong-Jun, CANG Ming. Transfected FST Gene into Ovine Muscle-Drived Myogenic Cells to Regulate the Expression of MSTN Gene [J]. Scientia Agricultura Sinica, 2013, 46(2): 385-393.
[10] WANG Wu-Bin, HE Qing-Yuan, YANG Hong-Yan, XIANG Shi-Hua, ZHAO Tuan-Jie, XING Guang-nan, GAI Jun-Yi. Detection of Wild Segments Associated with Number of Branches on Main Stem and Leafstalk Angle in Soybean [J]. Scientia Agricultura Sinica, 2012, 45(23): 4749-4758.
[11] ZHENG Yong-Qiang, LIU Yan-Mei, HE Shao-Lan, YI Shi-Lai, DENG Lie, ZHOU Zhi-Qin, JIAN Shui-Xian, LI Song-Wei. Analysis of the Specificity of Rootstock and Scion Combinations of ‘Hamlin’ Sweet Orange Related to Fruit Oleocellosis by FTIR [J]. Scientia Agricultura Sinica, 2012, 45(19): 4032-4039.
[12] ZHENG Yong-qiang,DENG Lie,HE Shao-lan,ZHOU Zhi-qin,YI Shi-lai,ZHAO Xu-yang ,WANG Liang
. Screening for the Agronomic Traits Regulating Fruit Oleocellosis with the Specificity Between Rootstocks and Scions of ‘Hamlin’ Sweet Orange
[J]. Scientia Agricultura Sinica, 2010, 43(23): 4877-4885 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!