Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 521-529.doi: 10.3864/j.issn.0578-1752.2019.03.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

CRISPR Locus Analysis of Lactobacillus casei

YANG Lan,YANG Yang(),LI WeiXun,OBAROAKPO JOY,PANG XiaoYang(),LÜ JiaPing()   

  1. Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2018-08-03 Accepted:2018-11-14 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 The application of the CRISPR/Cas9 gene editing system based on Streptococcus pyogenes spCas9 has restriction on lactic acid bacteria at present. It is urgent to develop a suitable gene editing system for lactic acid bacteria. In this study, we analysed the CRISPR system of Lactobacillus casei in depth, and then predicted the PAM sequence to activate its Cas9 protein. Our study provided the experimental foundation for the development of the CRISPR/lcCas9 gene editing system for lactic acid bacteria 【Method】 In this study, six strains of whole genome-sequenced L. casei were used as research object. Bioinformatics was used to analyze the CRISPR system. Cas protein structure, CRISPR system and homology of space were analysed. At the end, the second structure of the CRISPR repeat and PAM sequence recognized by Cas9 protein were predicted. 【Result】 The CRISPR system of L. casei had similar structures characteristic of Cas9 protein, and the Cas gene were conserved. It was predicted that the tracrRNA was located between Cas9 and Cas1, and the repeat sequence could form a secondary structure with a stem length of seven bases. According to the sequence characteristics of CRISPR spacers, six Lactobacillus casei could be divided into three genotypes. Then the spacer sequences were blasted one by one. The results showed that the six spacers aligned 14 original source sequences with different origins, and these spacer sequences were all derived from different plasmids. The PAM sequence recognized by L. casei lcCas9 protein preferred T/C, A/C at the 1 st and 3 rd bases. The 2 nd and 4 th bases had greater preferences for G and A.【Conclusion】 The CRISPR system of six strains of L. casei were all type-IIA. Consequently, the Cas gene and repeat sequences were highly conserved. The DR sequence formed a stable secondary structure, while TGMA as a PAM sequence was effectively identified by the Cas9 proetein of L. casei.

Key words: Lactobacillus casei, CRISPR system, spacer, Cas gene, PAM

Fig. 1

L. casei CRISPR locus structure"

Table 1

Six strains of L. casei CRISPR sequence"

菌株
Strain
CRISPR长度
Length of CRISPR
Spacer数量
Number of spacer
DR序列长度
Length of DR sequence
DR序列
DR sequence
Cas
L. casei ZHANG 1092 16 36 GTCTCAGGTAGATGTCGAATCAATCAGTTCAAGAGC Cas9, Cas1, Cas2, Csn2
L. casei ZHANG 145 1 46 GGGGTCCTTATGAGCAGGTTTCTGCGCCTGTTTGCGCGTTTCGAAA 无 No
L. casei ZHANG 109 1 27 GGTCCTTACACGTAGGTTTCTGGTCTG 无 No
L. casei ZHANG 116 1 31 CTTTGGTCGTTTAGGTTCGAGGTCCTTATGC 无 No
L. casei ZHANG 121 1 33 CGGTTTCTAAACGCGTTCGCCACCCCAGAAACC 无 No
L. casei ZHANG 107 1 29 GGTCCTTATGTGTAGGTTTCTGGGCCAGC 无 No
L. casei ZHANG
质粒 plca36
78 1 24 AAAGTCCGCATGACTTCGTTGAAA 无 No
L. casei BD-Ⅱ 1422 21 36 GTCTCAGGTAGATGTCGAATCAATCAGTTCAAGAGC Cas9, Cas1, Cas2, Csn2
L. casei BL23 1422 21 36 GTCTCAGGTAGATGTCGAATCAATCAGTTCAAGAGC Cas9, Cas1, Cas2, Csn2
L. casei LC2W 1422 21 36 GTCTCAGGTAGATGTCGAATCAATCAGTTCAAGAGC Cas9, Cas1, Cas2, Csn2
L. casei W56 1424 21 36 GTCTCAGGTAGATGTCGAATCAATCAGTTCAAGAGC Cas9, Cas1, Cas2, Csn2
L. casei LOCK919 762 11 36 GTCTCAGGTAGATGTCGAATCAATCAGTTCAAGAGC Cas9, Cas1, Cas2, Csn2
L. casei LOCK919
质粒 pLOCK919
146 2 26 CGGGAAACCGAAAATCGGTCGCCCGC 无 No

Fig. 2

Location of L. casei tracrRNA in the CRISPR locus"

Fig. 3

Repeated RNA secondary structure"

Fig. 4

Analysis of the diversity of six isolates of L. casei"

Table 2

Sequence characteristics of the original spacer corresponding to L. casei spacer"

间隔
Spacer
原间隔区
Original interval
开放阅读框
Open reading box
匹配性 Matching
BD-Ⅱ间隔区21
BD-Ⅱspacer21
乳杆菌质粒pREN
Lactobacillus rennini plasmid pREN
假定蛋白质
Assuming protein
30/30
BL23间隔区21
BL23 spacer21
乳杆菌质粒pREN
Lactobacillus rennini plasmid pREN
假定蛋白质
Assuming protein
30/30
LC2W 间隔区21
LC2W spacer21
乳杆菌质粒pREN
Lactobacillus rennini plasmid pREN
假定蛋白质
Assuming protein
30/30
W56 间隔区21
W56 spacer21
乳杆菌质粒pREN
Lactobacillus rennini plasmid pREN
假定蛋白质
Assuming protein
30/30
ZHANG间隔区14
ZHANG spacer14
乳酸乳球菌UL8质粒pUL8C
Lactococcus lactis subsp. lactis strain UL8 plasmid pUL8C
29/30
乳酸乳球菌乳脂亚种UC109 质粒pUC109F
Lactococcus lactis subsp. cremoris strain UC109 plasmid pUC109F
29/30
乳酸乳球菌C10 质粒pC10A
Lactococcus lactis subsp. lactis strain C10 plasmid pC10A
29/30
乳酸乳球菌KLDS 4.0325 质粒 unnamed2
Lactococcus lactis subsp. lactis KLDS 4.0325 plasmid unnamed2
29/30
乳酸乳球菌质粒pCL2.1
Lactococcus lactis plasmid pCL2.1
29/30
ZHANG间隔区15
ZHANG spacer15










乳酸杆菌TMW 1.1992 质粒 pL11992-8
Lactobacillus backii strain TMW 1.1992 plasmid pL11992-8
29/30
副干酪乳杆菌质粒pLP5403
Lactobacillus paracasei plasmid pLP5403
假定蛋白质
Assuming protein
29/30
卡氏双球菌ATCC BAA-344 质粒 pPECL-1
Pediococcus claussenii ATCC BAA-344 plasmid pPECL-1
29/30
植物乳杆菌质粒pXY3
Lactobacillus plantarum plasmid pXY3
ORF4 29/30
短乳酸杆菌质粒pLB925A01
Lactobacillus brevis plasmid pLB925A01
29/30
乳明串珠球菌质粒pCI411
Leuconostoc lactis plasmid pCI411
29/30
植物乳杆菌MF1298质粒19
Lactobacillus plantarum strain MF1298 plasmid unnamed19
28/30
戊糖片球菌SRCM100892质粒pPC892-5
Pediococcus pentosaceus strain SRCM100892 plasmid pPC892-5
27/30

Fig. 5

Lactobacillus casei CRISPR system identification PAM prediction"

[1] COBB R E, WANG Y, ZHAO H . High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2015,4(6):723-728.
doi: 10.1021/sb500351f pmid: 25458909
[2] JIANG Y, CHEN B, DUAN C, SUN B, YANG J, YANG S . Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 2015,81(7):2506-2514.
[3] PYNE M E, MOO-YOUNG M, CHUNG D A, CHOU C P . Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and Environmental Microbiology, 2015,81(15):5103-5114.
doi: 10.1128/AEM.01248-15 pmid: 26002895
[4] 陈冲, 宋丽菊, 齐盼盼, 王敏, 冯盨, 张杰, 赵建 . 干酪乳杆菌在乳制品中的应用研究进展. 食品与发酵科技, 2015,51(4):88-91.
CHEN C, SONG L J, QI P P, WANG M, FENG W, ZHANG J, ZHAO J . Progress in the application of Lactobacillus casei in dairy products. Food and Fermentation Technology, 2015,51(4):88-91. (in Chinese)
[5] KOEBNICK C, WAGNER I, LEITZMANN P, STERN U, ZUNFT H J . Probiotic beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in patients with chronic constipation. Canadian Journal of Gastroenterology, 2016,17(11):655-659.
doi: 10.1155/2003/654907 pmid: 14631461
[6] AKOGLU B, LOYTVED A, NUIDING H, ZEUZEM S, FAUST D . Probiotic Lactobacillus casei Shirota improves kidney function, inflammation and bowel movements in hospitalized patients with acute gastroenteritis-A prospective study. Journal of Functional Foods, 2015,17:305-313.
doi: 10.1016/j.jff.2015.05.021
[7] MAKAROVA K S, WOLF Y I, KOONIN E V . Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research, 2013,41(8):4360-4377.
doi: 10.1093/nar/gkt157 pmid: 23470997
[8] BOLOTIN A, QUINQUIS B, SOROKIN A, EHRLICH S D . Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005,151(Pt 8):2551-2561.
[9] VISWANATHAN P, MURPHY K, JULIEN B, GARZA A G, KROOS L . Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. Journal of Bacteriology, 2007,189(10):3738-3750.
doi: 10.1128/JB.00187-07
[10] KARVELIS T, GASIUNAS G, MIKSYS A, BARRANGOU R, HORVATH P, SIKSNYS V . CrRNA and tracrRNA guide Cas9- mediated DNA interference in Streptococcus thermophilus. RNA Biology, 2013,10(5):841-851.
[11] DELTCHEVA E, CHYLINSKI K, SHARMA C M, GONZALES K, CHAO Y, PIRZADA Z A, ECKERT M R, VOGEL J, CHARPENTIER E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607.
doi: 10.1038/nature09886 pmid: 21455174
[12] VAN DER OOST J, JORE M M, WESTRA E R, LUNDGREN M, BROUNS S J . CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 2009,34(8):401-407.
doi: 10.1016/j.tibs.2009.05.002 pmid: 19646880
[13] FUJII W, ONUMA A, SUGIURA K, NAITO K . Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system. Biochemical & Biophysical Research Communications, 2014,445(4):791-794.
doi: 10.1016/j.bbrc.2014.01.141 pmid: 24491566
[14] AIDA T, CHIYO K, USAMI T, ISHIKUBO H, IMAHASHI R, WADA Y, TANAKA K F, SAKUMA T, YAMAMOTO T, TANAKA K . Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biology, 2015,16(1):1-11.
doi: 10.1186/s13059-015-0653-x pmid: 25924609
[15] NAKAGAWA Y, SAKUMA T, SAKAMOTO T, OHMURAYA M, NAKAGATA N, YAMAMOTO T . Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze- thawed fertilized oocytes. BMC Biotechnology, 2015,15(1):33.
doi: 10.1186/s12896-015-0144-x pmid: 25997509
[16] MA Y W, ZHANG X, SHEN B, LU Y D, CHEN W, MA J, BAI L, HUANG X X, ZHANG L F . Generating rats with conditional alleles using CRISPR/Cas9. Cell Research, 2014,24(1):122-125.
doi: 10.1038/cr.2013.157 pmid: 24296780
[17] VARSHNEY G K, PEI W, LAFAVE M C, IDOL J, XU L, GALLARDO V, CARRINGTON B, BISHOP K, JONES M, LI M . High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 2015,25(7):1030-1042.
doi: 10.1101/gr.186379.114 pmid: 26048245
[18] AUER T O, DUROURE K, DE CIAN A, CONCORDET J P, DEL BENE F . Highly efficient CRISPR/Cas9 mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 2014,24(1):142.
doi: 10.1101/gr.161638.113 pmid: 24179142
[19] SHEN Z F, ZHANG X L, CHAI Y P, ZHU Z W, YI P S, FENG G X, LI W, OU G S . Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Developmental Cell, 2014,30(5):625-636.
[20] MIAO J, GUO D S, ZHANG J Z, HUANG Q P, QIN G J, ZHANG X, WAN J M, GU H Y, QU L J . Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 2013,23(10):1233-1236.
doi: 10.1038/cr.2013.123
[21] FENG Z Y, MAO Y F, XU N F, ZHANG B T, WEI P L, YANG D L, WANG Z, ZHANG Z J, ZHENG R, YANG L, ZENG L, LIU X D, ZHU J K . Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(12):4632-4637.
[22] LUN C, BIKARD D . Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Research, 2016,44(9):4243-4251.
[23] JI W Y, LEE D, WONG E, DADLANI P, DINH D, HUANG V, KEARNS K, TENG S, CHEN S, HALIBURTON J, HALIBURTON J, HEIMBERG G, HEINEIKE B, RAMASUBRAMANIAN A, STEVENS T, HELMKE K J, ZEPEDA V, QI L S, LIM W A . Specific gene repression by CRISPRi system transferred through bacterial conjugation. Acs Synthetic Biology, 2014,3(12):929-931.
doi: 10.1021/sb500036q pmid: 4277763
[24] JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA J A, CHARPENTIER E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
pmid: 22745249
[25] JIANG W, BIKARD D, COX D, ZHANG F, MARRAFFINI L A . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013,31(3):233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[26] BURGESS D J . Technology: A CRISPR genome-editing tool. Nature Reviews Genetics, 2013,14(2):80.
doi: 10.1038/nrg3409 pmid: 23322222
[27] OH J H , VAN PIJKEREN J P . CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Research, 2014,42(17):e131.
[28] BIDART G N, RODRIGUEZ-DIAZ J, MONEDERO V, YEBRA M J . A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei. Molecular Microbiology, 2014,93(3):521-538.
doi: 10.1111/mmi.12678 pmid: 24942885
[29] CHYLINSKI K, LE RHUN A, CHARPENTIER E . The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biology, 2013,10(5):726-737.
doi: 10.4161/rna.24321 pmid: 23563642
[30] HORVATH P, BARRANGOU R . CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010,327(5962):167-170.
doi: 10.1126/science.1179555 pmid: 20056882
[31] BARRANGOU R, FREMAUX C, DEVEAU H, RICHARDS M, BOYAVAL P, MOINEAU S, ROMERO D A, HORVATH P . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007,315(5819):1709-1712.
doi: 10.1126/science.1138140 pmid: 17379808
[32] GARNEAU J E, DUPUIS M E, VILLION M, ROMERO D A, BARRANGOU R, BOYAVAL P, FREMAUX C, HORVATH P, MAGADAN A H, MOINEAU S . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
[33] SAPRANAUSKAS R, GASIUNAS G, FREMAUX C, BARRANGOU R, HORVATH P, SIKSNYS V . The Streptococcus thermophilus CRISPR/ Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011,39(21):9275-9282.
[34] MARRAFFINI L A, SONTHEIMER E J . CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008,322(5909):1843.
doi: 10.1126/science.1165771 pmid: 2695655
[35] BARRANGOU R, HORVATH P . A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017,2:17092.
doi: 10.1038/nmicrobiol.2017.92 pmid: 28581505
[36] BRINER A E, LUGLI G A, MILANI C, DURANTI S, TURRONI F, GUEIMONDE M, MARGOLLES A, VAN SINDEREN D, VENTURA M, BARRANGOU R . Occurrence and diversity of CRISPR-Cas systems in the genus bifidobacterium. PLoS ONE, 2015,10(7):e0133661.
doi: 10.1371/journal.pone.0133661 pmid: 4521832
[37] DEVEAU H, BARRANGOU R, GARNEAU J E, LABONTE J, FREMAUX C, BOYAVAL P, ROMERO D A, HORVATH P, MOINEAU S . Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology, 2008,190(4):1390-1400.
[38] PAEZ-ESPINO D, MOROVIC W, SUN C L, THOMAS B C, UEDA K, STAHL B, BARRANGOU R, BANFIELD J F . Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nature Communications, 2013,4:1430.
doi: 10.1038/ncomms2440 pmid: 23385575
[39] GASIUNAS G, BARRANGOU R, HORVATH P, SIKSNYS V . Cas9- crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(39):E2579-E2586.
doi: 10.1073/pnas.1208507109
[40] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, ALMENDROS C . Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009,155(Pt 3):733-740.
doi: 10.1099/mic.0.023960-0 pmid: 19246744
[41] HSU P D, SCOTT D A, WEINSTEIN J A, RAN F A, KONERMANN S, AGARWALA V, LI Y, FINE E J, WU X, SHALEM O, CRADICK T J, MARRAFFINI L A, BAO G, ZHANG F . DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013,31(9):827-832.
doi: 10.1038/nbt.2647
[42] ZHANG Y, GE X, YANG F, ZHANG L, ZHENG J, TAN X, JIN Z B, QU J, GU F . Comparison of non-canonical PAMs for CRISPR/ Cas9-mediated DNA cleavage in human cells. Scientific Reports, 2014,4:5405.
doi: 10.1038/srep05405 pmid: 4066725
[43] RAN F A, CONG L, YAN W X, SCOTT D A, GOOTENBERG J S, KRIZ A J, ZETSCHE B, SHALEM O, WU X, MAKAROVA K S, KOONIN E V, SHARP P A, ZHANG F . In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520(7546):186-191.
[44] KLEINSTIVER B P, PREW M S, TSAI S Q, NGUYEN N T, TOPKAR V V, ZHENG Z, JOUNG J K . Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015,33(12):1293-1298.
[1] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[2] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[3] LIU XiaoQiang, JIANG HongBo, LI HuiMin, XIONG Ying, WANG JinJun. The cDNA Cloning, Expression Profiling and Functional Characterization of Octopamine Receptor 3 (TcOctβR3) in Tribolium castaneum [J]. Scientia Agricultura Sinica, 2018, 51(7): 1315-1324.
[4] LI Sheng-nan, QIN Zhi-wei, XIN Ming, ZHOU Xiu-yan. Expression and Functional Analysis of CsWRKY30 in Cucumber Under Propamocarb Stress [J]. Scientia Agricultura Sinica, 2016, 49(7): 1277-1288.
[5] FAN Wei-guo, YANG Hong-qiang. Response of Root Architecture, Nutrients Uptake and Shoot Growth of Malus hupehensis Seedling to the Shape of Root Zone [J]. Scientia Agricultura Sinica, 2014, 47(19): 3907-3913.
[6] YANG Ting, WU Yin-Liang, LI Cun, ZHAO Jian, CHEN Guo, LU Yan . Preparation and Characterization of Ractopamine-Imprinted Material Using Surface-Molecular Imprinting Method and Its Adsorption Characteristics [J]. Scientia Agricultura Sinica, 2013, 46(6): 1256-1262.
[7] CHEN Wei-1, ZHOU Bo-3, SHU Huai-Rui-2. Effects of Organic Fertilizer and Biochar on Root System and Microbial Functional Diversity of Malus hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856.
[8] TIAN Yi-12, KANG Guo-Dong-1, ZHANG Cai-Xia-1, ZHANG Li-Yi-1, HAO Yu-Jin-2, CONG Pei-Hua-1. Progress and Perspectives in Research of Chitin Triggered Immunity in Plant [J]. Scientia Agricultura Sinica, 2013, 46(15): 3115-3124.
[9] ZHANG Ji-yu,TONG Zhao-guo,GAO Zhi-hong ,LUO Chang-guo,QU Shen-chun,ZHANG Zhen
. Expression of MhWRKY1 Gene Induced by the Elicitors SA,MeJA, ACC and the Apple Ring Spot Pathogen
[J]. Scientia Agricultura Sinica, 2011, 44(5): 990-999 .
[10] LIU Di,LIU Ai-hong,WANG Jin-hua,ZHANG Yuan-zhen,WANG Yan-an,ZHANG Fu-suo,SHU Huai-rui
. Organic Acids in Apple Trees and Their Effects on Zinc Uptake and Distribution Under Zinc Deficiency
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3381-3391 .
[11] WU Yan-bo,CHEN Cong-ying,ZHANG Zhi-yan,GUO Yuan-mei,GAO Jun
. Genetic Variation of Porcine Sperm Adhesion Molecule 1 (SPAM1) Gene and Its Association with Litter Size in a White Duroc×Erhualian Resource Population
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2111-2117 .
[12] . Effects of Propamidine on Mycelium Shape and Ultrastructure Changes of Botrytis cirerea [J]. Scientia Agricultura Sinica, 2007, 40(3): 633-637 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!