Previous Articles Next Articles
NIE Hong-yi, ZHONG Xiao-wu, YI Qi-ying, ZHANG Li-ping, ZOU Yong, ZHAO Ping
[1]Waters E R, Rioflorido I. Evolutionary analysis of the small heat shock proteins in five complete algal genomes. Journal of Molecular Evolution, 2007, 65(2): 162-174. [2]Aevermann B D, Waters E R. A comparative genomic analysis of the small heat shock proteins in Caenorhabditis elegans and briggsae. Genetica, 2008, 133(3): 307-319. [3]Waters E R, Aevermann B D, Sanders-Reed Z. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress and Chaperones, 2008, 13(2): 127-142. [4]Carper S W, Duffy J J, Gerner E W. Heat shock proteins in thermotolerance and other cellular processes. Cancer Research, 1987, 47(20): 5249-5255. [5]Caspers G J, Leunissen J A M, de Jong W W. The expanding small heat-shock protein family, and structure predictions of the conserved α-crystallin domain. Journal of Molecular Evolution, 1995, 40(3): 238-248. [6]van Montfort R L M, Basha E, Friendrich K L, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural and Molecular Biology, 2001, 8(12): 1025-1030. [7]Lee G J, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. Journal of Biological Chemistry, 1995, 270(18): 10432-10438. [8]Nakamoto H, Vigh L. The small heat shock proteins and their clients. Cellular and Molecular Life Sciences, 2007, 64(3): 294-306. [9]Kappé G, Franck E, Verschuure P, Boelens W C, Leunissen J A M, de Jong W W. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress and Chaperones, 2003, 8(1): 53-61. [10]李 斌, 夏庆友, 藤井博, 伴野丰, 鲁 成. 低分子量热激蛋白Bmhsp19.9基因的表达. 农业生物技术学报, 2005, 13(2): 195-201. Li B, Xia Q Y, Hiroshi F, Yutaka B, Lu C. Expression of the small heat-shock protein Bmhsp19.9 gene in silkworm (Bombyx mori). Journal of Agricultural Biotechnology, 2005, 13(2): 195-201. (in Chinese) [11]Sakano D, Li B, Xia Q Y, Yamamoto K, Fujii H, Aso Y. Genes encoding small heat shock proteins of the silkworm, Bombyx mori. Bioscience, Biotechnology and Biochemistry, 2006, 70(10): 2443-2450. [12]孙卫忠, 李 斌, 王彦文, 柴春利, 刘彬斌, 鲁 成. 家蚕 HSP20.8基因体外表达及荧光原位杂交研究. 蚕业科学, 2007, 33(1): 14-19. Sun W Z, Li B, Wang Y W, Chai C L, Liu B B, Lu C. Expression in vitro and fluorescence in situ hybridization of the HSP20.8 gene of Bombyx mori. Acta Sericologica Sinica, 2007, 33(1): 14-19. (in Chinese) [13]Li Z W, Li X, Yu Q Y, Xiang Z H, Kishino H, Zhang Z. The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evolutionary Biology, 2009, 9(1): 215. [14]向仲怀. 蚕丝生物学. 北京: 中国林业出版社, 2005: 19-30. Xiang Z H. Biology of Sericulture. Beijing: China Forestry Press, 2005: 19-30. (in Chinese) [15]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254. [16]Peri S, Steen H, Pandey A. GPMAW-a software tool for analyzing proteins and peptides. TRENDS in Biochemical Sciences, 2001, 26(11): 687-689. [17]Sarge K D, Cullen K E. Regulation of hsp expression during rodent spermatogenesis. Cellular and Molecular Life Sciences, 1997, 53(2): 191-197. [18]Fujita Y, Ohto E, Katayama E, Atomi Y. αB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly. Journal of Cell Science, 2004, 117(9): 1719-1726. [19]Day R M, Gupta J S, MacRae T H. A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress and Chaperones, 2003, 8(2): 183-193. [20]MacRae T H. Molecular chaperones, stress resistance and development in Artemia franciscana. Seminars in Cell and Developmental Biology, 2003, 14: 251-258. [21]聂红毅, 钟晓武, 邹 勇, 衣启营, 赵 萍, 夏庆友. 家蚕精巢蛋白质的双向电泳及质谱分析. 昆虫学报, 2010, 53(4): 369-378. Nie H Y, Zhong X W, Zou Y, Yi Q Y, Zhao P, Xia Q Y. Identification of testis proteins of silkworm Bombyx mori using two-dimensional electrophoresis and mass spectrometry. Acta Entomologica Sinica, 2010, 53(4): 369-378. (in Chinese) [22]Raff E C, Hutchens J A, Hoyle H D, Nielsen M G, Turner F R. Conserved axoneme symmetry altered by a component β-tubulin. Current Biology, 2000, 10(21): 1391-1394. [23]Fouquet J P, Kann M L, Péchart I, Prigent Y. Expression of tubulin isoforms during the differentiation of mammalian spermatozoa. Tissue and Cell, 1997, 29(5): 573-583. [24]Sahara K, Takemura Y. Application of artificial insemination technique to eupyrene and/or apyrene sperm in Bombyx mori. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 2003, 297(2): 196-200. [25]van der Horst D J, Van Hoof D, Van Marrewijk W J A, Rodenburg K W. Alternative lipid mobilization: the insect shuttle system. Molecular and Cellular Biochemistry, 2002, 239(1): 113-119. [26]Van der Horst D J. Insect adipokinetic hormones: release and integration of flight energy metabolism. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003, 136(2): 217-226. [27]Sun D, Ziegler R, Milligan, C E, Schwartz L M. Apolipophorin III is dramatically up-regulated during the programmed death of insect skeletal muscle and neurons. Journal of Neurobiology, 2004, 26(1): 119-129. [28]Iimura Y, Ishikawa H, Yamamoto K, Sehnal F. Hemagglutinating properties of apolipophorin III from the hemolymph of Galleria mellonella larvae. Archives of Insect Biochemistry and Physiology, 1998, 38(3): 119-125. [29]Whitten M M A, Tew I F, Lee B L, Ratcliffe N A. A novel role for an insect apolipoprotein (apolipophorin III) in β-1,3-glucan pattern recognition and cellular encapsulation reactions. The Journal of Immunology, 2004, 172(4): 2177-2185. [30]Seo S J, Park K H, Cho K H. Apolipophorin III from Hyphantria cunea shows different anti-oxidant ability against LDL oxidation in the lipid-free and lipid-bound state. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 151(4): 433-439. [31]官 建. 家蚕羽化变态时期血液蛋白质组学研究[D]. 重庆: 西南大学, 2007. Guan J. Analysis of the proteomic of the hemolyph protein in moth in silkworm, Bombyx mori[D]. Chongqing: Southwest University, 2007. (in Chinese) |
[1] | LONG YanBi,WU YunFei,ZHANG Qian,CHEN Peng,PAN MinHui. Screening and Identification of HSP90 Interacting Proteins in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2022, 55(6): 1253-1262. |
[2] | LI TaoTao,WANG Xia,MA YouJi,YIN DeEn,ZHANG Yong,ZHAO XingXu. Molecular Characterization of Tibetan Sheep BOLL and Its Expression Regulation and Functional Analysis in Testis [J]. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312. |
[3] | CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567. |
[4] | DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384. |
[5] | YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838. |
[6] | ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190. |
[7] | ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411. |
[8] | WANG Fei, LI XianYang, HUA XiaoTing, XIA QingYou. Screening and Analysis of Anti-BmNPV Cytokines in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(4): 789-799. |
[9] | Jie HU,XinYi WANG,Fei WANG. Functional Characterization of BmCaspase-8-Like (BmCasp8L) as an Immune Negative Regulatory Molecule in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(21): 4188-4196. |
[10] | LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373. |
[11] | ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224. |
[12] | ZHANG WeiWei, DONG ZhaoMing, ZHANG Yan, ZHANG XiaoLu, ZHANG ShouYa, ZHAO Ping. Expression Pattern and Chitin-Binding Mode Analyses of Cuticle Protein BmCPAP3-G in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1723-1733. |
[13] | FAN XiaoRui, ZHANG Zhen, XI HuaMing, LIANG YaJun, HE JunPing. Effect of Heat Stress on the Expression of Cyt-C and Caspase-3 in Boar Testis [J]. Scientia Agricultura Sinica, 2017, 50(5): 924-931. |
[14] | ZHANG Qian, LIU TaiHang, DONG XiaoLong, WU YunFei, YANG JiGui, ZHOU Liang, PAN CaiXia, PAN MinHui. Identification of the Interactions of CDK11 with RNPS1 and 9G8 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(22): 4398-4407. |
[15] | JIANG YaMing, DONG ZhanQi, CHEN TingTing, HU Nan, DONG FeiFan, HUANG Liang, TANG LiangTong, PAN MinHui. Identification the key areas of Bombyx mori Nucleopolyhedrovirus LEF-11 self-interaction [J]. Scientia Agricultura Sinica, 2017, 50(20): 4028-4035. |
|