Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 368-385.doi: 10.3864/j.issn.0578-1752.2026.02.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Nitrogen Application on Soil Fungal Diversity, Functional Groups and Assembly Processes in Tea Gardens

WANG Feng1,2(), CHANG YunNi1,2, WU ZhiDan1,2, SUN Jun1,2, JIANG FuYing1,2, CHEN YuZhen1,2(), YU WenQuan1,3()   

  1. 1 Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013
    2 National Agricultural Experimental Station for Soil Quality, Fu′an 355015, Fujian
    3 Fujian Academy of Agricultural Sciences, Fuzhou 350003
  • Received:2025-03-10 Accepted:2025-07-17 Online:2026-01-16 Published:2026-01-22
  • Contact: CHEN YuZhen, YU WenQuan

Abstract:

【Objective】 This study aimed to investigate the characteristics of soil fungal diversity, functional groups, and community assembly in tea garden soils subjected to varying long-term nitrogen applications. Additionally, it sought to determine the optimal nitrogen fertilizer application rate for tea gardens, thereby providing a scientific foundation for the sustainable and rational use of nitrogen in tea cultivation. 【Method】 The field experiment (small cement pond) was set up in the base of the Tea Research Institute, Fujian Academy of Agricultural Sciences, (beginning in 2011), and four nitrogen levels were applied: N0 (0), N1 (112.5 kg N·hm-2), N2 (225 kg N·hm-2), N3 (450 kg N·hm-2), and each treatment was repeated four times. ITS high-throughput sequencing was used to analyze the effects of long-term nitrogen applications on the soil fungal diversity, functional groups, and community assembly. 【Result】 Compared with N0, long-term nitrogen increased the yield of spring and autumn tea by 137.79%-430.20% and 33.43%-67.49%, respectively, but there was no significant difference between N2 and N3 treatments. The soil fungal diversity tended to initially increase and then decrease with increasing nitrogen addition in two seasons. Compared with N0, N3 significantly increased the Ace, Chao1 and Shannon of fungal. Results of non-metric multidimensional scaling analysis (NMDS) and permutational multivariate analysis of variance (PERMANOVA) showed that long-term nitrogen application drastically changed the community structures of soil fungi in tea plantations. The functional prediction with FUNGuild showed that long-term nitrogen application significantly changed the functions of soil fungi during the spring period, but the changes were not significant during the autumn. Compared with the N0 treatment, N2 and N3 treatments decreased the relative abundance of plant pathogens and soil saprotrophs fungi (especially during the spring tea), and N2 treatment increased the relative abundances of two beneficial fungi, namely ectomycorrhizal fungi and arbuscular mycorrhizal fungi. Redundancy analysis (RDA) showed that the soil pH, nitrate nitrogen, ammonium nitrogen and available potassium were the main factors for determining fungal community structure and functional groups. Compared with N0 treatment, the application of nitrogen fertilizer increased the number of edges, average degree, average clustering coefficient, and network density of the fungal network, and so enhanced the stability of the fungal community and improved its resistance to disturbances. In the process of community succession, stochastic processes dominated the construction of the tea garden soil fungal community under long-term nitrogen application, and the deterministic processes were enhanced in the community assembly under the low and medium nitrogen treatments. 【Conclusion】 From the perspective of yield, community diversity, enrichment of enrichment of beneficial fungi, and network stability, the applying nitrogen fertilizer of 225 kg N·hm-2 was a reasonable amount for tea plant.

Key words: long-term nitrogen application, tea garden, fungal community structure, functional prediction, co-occurrence network, community assembly

Fig. 1

Designation of long-term nitrogen application location filed experiment in tea garden a: Each independent small cement pool in the field (blanks are for other treatments); b: Aerial image of the field trials; c: Each plot isolated by concrete ponds; d: The size of each experimental plot"

Table 1

Soil physical and chemical properties of tea garden soil and tea yield under different nitrogen addition"

指标
Indicator
春季 Spring 秋季 Autumn 施氮量
Nitrogen (N)
季节
Seasons(S)
N×S
N0 N1 N2 N3 N0 N1 N2 N3
SOM (g·kg-1) 19.02±2.67Ab 20.14±1.58Aab 19.67±1.19Aab 22.38±1.46Aa 15.53±3.11Aa 21.07±1.98Aa 17.34±3.23Aa 31.5±11.69Ab 6.792*** 0.412NS 2.98NS
TN (g·kg-1) 0.69±0.04Bb 0.89±0.09Aa 0.96±0.05Aa 0.97±0.13Aa 0.87±0.06Ab 1.04±0.11Aa 0.97±0.17Aa 1.44±0.22Aa 14.465*** 19.718*** 4.231*
AN (mg·kg-1) 29.03±5.44Ab 35.93±8.29Aa 40.22±9.91Aa 58.18±7.45Aa 39.90±3.54Ab 40.93±11.57Ab 42.97±0.05Ab 62.93±10.48Aa 16.835*** 4.296 0.386NS
NO3--N (mg·kg-1) 3.48±0.58Ac 2.13±2.09Ac 9.48±2.71Ab 14.53±5.04Aa 1.04±0.40Ab 1.27±0.23Ab 1.29±0.17Ab 2.38±0.81Bb 16.223*** 58.105*** 11.327***
NH4+-N (mg·kg-1) 13.4±5.38Bb 19.19±1.46Bb 25.01±7.86Bb 40.98±17.52Aa 50.54±0.97Aa 51.19±0.69Aa 50.12±0.77Aa 50.32±1.23Aa 5.403** 106.334*** 5.789**
TP (g·kg-1) 0.60±0.05Aa 0.71±0.11Aa 0.63±0.12Aa 0.68±0.02Aa 0.61±0.03Ab 0.65±0.09Ab 0.67±0.03Ab 0.76±0.04Aa 3.189* 0.524NS 1.077NS
AP (mg·kg-1) 73.87±18.79Ba 61.34±16.14Aa 76.3±37.53Aa 80.75±3.57Ba 183.76±37.44Aa 91.24±41.03Ab 85.22±50.91Ab 197.17±62.2Aa 5.758** 24.271*** 4.157*
TK (g·kg-1) 28.02±1.51Aa 27.66±0.75Aa 25.97±2.04Aa 29.17±1.44Aa 28.07±1.34Aab 26.9±0.92Ab 26.47±0.97Ab 29.42±0.78Aa 8.027*** 0.01NS 0.36NS
AK (mg·kg-1) 291.01±21.9Aa 303.66±7.13Aa 243.01±6.21Ab 210.75±41.12Ab 287.75±21.06Aa 270.33±36.02Aab 243.75±18.33Abc 225.75±6.7Ac 17.573*** 0.396NS 1.507NS
pH 5.16±0.27Aa 5.16±0.04Aa 4.83±0.24Aab 4.55±0.24Ab 5.29±0.03Aa 5.01±0.08Ab 4.96±0.08Ab 4.75±0.08Ac 3.029* 49.546*** 0.551NS
UR (mg·g-1·24h-1) 179.11±33.3Bd 286.66±12.53Bc 408.04±61.39Bb 664.58±100.81Aa 361.47±147Ab 722.46±239.73Aab 960.61±395.64Aab 1062.5±640.64Aa 6.223** 14.885** 0.578NS
NIR (mg·g-1·24h-1) 9.42±5.24Aa 9.40±5.61Aa 5.96±3.88Aa 4.60±2.78Aa 8.34±2.63Aa 11.10±2.43Aa 8.90±3.19Aa 6.05±3.54Aa 2.427NS 0.854NS 0.388NS
INV (mg·g-1·24h-1) 4.83±3.42Aa 6.67±2.19Aa 5.49±1.14Aa 3.60±0.93Aa 7.41±2.86Aa 9.24±2.75Aa 5.69±3.09Aa 6.23±2.01Aa 2.252NS 5.258* 0.474NS
PPO (mg·g-1·24h-1) 8.23±4.84Aa 6.35±0.49Aa 6.38±1.19Aa 4.92±0.75Ba 6.96±1.53Ab 11.1±5.04Ab 6.64±1.19Ab 20.34±10.37Aa 2.805NS 9.021** 5.587**
CAT (mg·g-1·24h-1) 4.79±2.54Aa 2.12±1.04Ba 2.95±1.20Ba 4.31±5.53Aa 13.71±6.93Aa 12.67±1.02Aa 12.65±3.74Aa 14.52±13.60Aa 0.23NS 21.546*** 0.028NS
ACP (mg·g-1·24h-1) 19.64±3.16Bb 25.09±0.84Bab 32.78±12.03Aa 23.05±2.53Bab 33.34±4.54Ab 37.67±3.33Ab 38.65±4.87Ab 49.40±5.08Aa 5.395** 56.23*** 4.801**
产量Yield (t·hm-2) 1.11±0.35Bc 2.60±0.51Bb 4.90±1.10Aa 5.88±0.63Aa 3.60±0.25Ac 4.69±0.23Ab 5.31±0.68Aab 6.03±0.53Aa 34.331*** 110.921*** 5.258*

Table 2

Effects of long-term nitrogen fertilization treatments on soil fungal community diversities of tea gardens"

季节
Seasons
处理
Treatment
Sobs指数
Sobs index
Ace指数
Ace index
Chao1指数
Chao1 index
Shannon 指数
Shannon index
Simpson指数
Simpson index
覆盖度
Coverage (%)
春季
Spring
N0 822±45Aab 906±51Aa 905±48Aa 4.31±0.21Aa 0.04±0.01Bb 99.82
N1 858±146Aa 969±135Aa 974±141Aa 4.16±0.61Aab 0.07±0.05Aab 99.77
N2 818±75Aab 923±77Aa 932±65Aa 3.81±0.45Aab 0.11±0.06Aab 99.80
N3 676±69Ab 745±70Ab 745±69Ab 3.51±0.29Ab 0.12±0.03Aa 99.85
秋季
Autumn
N0 693±89Bab 796±77Aab 795±83Aab 3.53±0.44Ba 0.11±0.04Aa 99.80
N1 793±106Aa 900±107Aa 892±95Aa 3.92±0.53Aa 0.08±0.06Aa 99.80
N2 702±12Bab 838±37Aab 839±32Ba 3.49±0.22Aa 0.12±0.04Aa 99.78
N3 637±30Ab 727±27Ab 726±34Ab 3.54±0.45Aa 0.12±0.06Aa 99.81
施氮量Nitrogen (N) 5.76** 8.731** 9.235** 2.512NS 1.884NS
季节Seasons(S) 9.089** 6.174** 7.48** 4.586* 1.88NS
施氮量×季节N×S 0.537NS 0.466NS 0.508NS 1.226NS 0.814NS

Fig. 2

Non-metric multidimensional scaling (NMDS) of soil fungal based on Bray-Curtis distance (a: different nitrogen addition; b: different seasons; S: Spring; A: Autumn)"

Fig. 3

Relative abundance of soil fungal community at phylum (a) and genus (b) levels in the different sample plots (S: Spring; A: Autumn)"

Table 3

Two-way ANOVA (F values) of long-term nitrogen fertilization and seasons on relative abundance of dominant phylum and genus in soil fungal community"

分类Classification 因素Factor 施氮量Nitrogen (N) 季节Seasons(S) 施氮量×季节 N×S
门 Phylum 子囊菌门Ascomycota 0.448NS 0.034NS 0.382NS
担子菌门Basidiomycota 1.312NS 2.267NS 0.39NS
未知分类菌门 Unclassified_k__Fungi 1.971NS 1.999NS 0.023NS
被孢霉门Mortierellomycota 0.858NS 9.239** 1.066NS
罗兹菌门Rozellomycota 4.998** 1.516NS 0.843NS
球囊菌门Glomeromycota 3.198* 2.062NS 1.21NS
属 Genus 沙蜥属Saitozyma 1.287NS 3.132NS 0.512NS
未知分类菌属 Unclassified_k__Fungi 1.971NS 1.999NS 0.023NS
镰刀属Fusarium 7.43** 0.091NS 0.504NS
木霉属 Trichoderma 0.418NS 2.213NS 0.944NS
被孢霉属 Mortierella 1.231NS 8.847** 0.992NS
青霉属Penicillium 36.053** 8.18** 1.161NS
毛壳菌属 Chaetomium 0.528NS 7.6** 0.889NS
Unclassified_p__Ascomycota 2.979* 0.028NS 0.421NS
枝孢菌属Cladosporium 0.567NS 3.435NS 0.801NS
Unclassified_c__Archaeorhizomycetes 0.748NS 0.843NS 0.351NS

Fig. 4

LEfSe analysis of soil fungal under different nitrogen application rates (LDA threshold is 3.5)"

Fig. 5

The relative abundance of function types of soil fungi and Non-metric multidimensional scaling analysis (NMDS) under different nitrogen application rates"

Fig. 6

Redundancy analysis (RDA) between the community structure (A) and functional groups (B) of soil fungal and soil properties"

Fig. 7

Co-occurrence networks of soil fungal taxonomy under different nitrogen application rates"

Table 4

Topological parameters of soil fungal network of tea garden under different nitrogen application rates"

拓扑参数 Topological parameters N0 N1 N2 N3
边数Edges 140 178 159 173
正相关边数Positive edges 78 (55.71%) 122 (68.54%) 86 (54.09%) 90 (52.02%)
负相关边数Negative edges 62 (44.29%) 56 (31.46%) 73 (45.91%) 83 (47.98%)
节点Nodes 91 89 89 94
网络直径Network diameter 22 11 18 12
模块性Modularity 0.734 0.693 0.750 0.676
平均度Average degree 3.077 4.000 3.573 3.681
平均路径长度Average path length 7.364 4.871 6.889 5.188
平均聚类系数 Average clustering coefficient 0.351 0.399 0.490 0.441
网络密度Network density 0.034 0.045 0.041 0.040
模块数 Number of modules 5 10 13 11

Table 5

The assembly mechanism of the fungal community under different nitrogen application rates"

季节
Seasons
处理
Treatment
确定性过程Determinism (%) 随机性过程Stochasticity (%)
异质选择Heterogeneous selection 同质选择Homogeneous selection 比例之和
Total
同质扩散
Homogeneous dispersal
扩散限制
Dispersal
limitation
生态漂变
Drift
比例之和
Total
春季
Spring
N0 29.76 0.73 30.48 0.20 30.20 39.12 69.52
N1 42.40 0.02 42.42 0.90 23.41 33.27 57.58
N2 41.10 0.16 41.26 0.24 23.50 34.99 58.74
N3 24.31 0.46 24.77 0.80 26.90 47.53 75.23
秋季
Autumn
N0 36.90 0.01 36.91 1.23 21.28 40.58 63.09
N1 48.96 0.10 49.06 0.13 20.67 30.14 50.94
N2 52.03 0.00 52.03 0.90 13.95 33.11 47.96
N3 51.08 0.37 51.45 1.17 11.57 35.81 48.55

Fig. 8

The effects of different nitrogen application rates on the niche breadth of fungal communities"

[1]
GUO J J, LING N, CHEN Z J, XUE C, LI L, LIU L S, GAO L M, WANG M, RUAN J Y, GUO S W, VANDENKOORNHUYSE P, SHEN Q R. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. The New Phytologist, 2020, 226(1): 232-243.

doi: 10.1111/nph.v226.1
[2]
HE D, GUO Z M, SHEN W J, REN L J, SUN D, YAO Q, ZHU H H. Fungal communities are more sensitive to the simulated environmental changes than bacterial communities in a subtropical forest: The single and interactive effects of nitrogen addition and precipitation seasonality change. Microbial Ecology, 2023, 86(1): 521-535.

doi: 10.1007/s00248-022-02092-8
[3]
陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用. 植物生态学报, 2024, 48(1): 1-20.

doi: 10.17521/cjpe.2023.0075
CHEN B D, FU W, WU S L, ZHU Y G. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling. Chinese Journal of Plant Ecology, 2024, 48(1): 1-20. (in Chinese)

doi: 10.17521/cjpe.2023.0075
[4]
LIU S G, GARCÍA-PALACIOS P, TEDERSOO L, GUIRADO E, WAGG C, CHEN D M, WANG Q K, WANG J T, SINGH B K, DELGADO-BAQUERIZO M. VAN DER HEIJDEN M G A, Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nature Ecology & Evolution, 2022, 6(7): 900-909.
[5]
YUAN M M, GUO X, WU L W, ZHANG Y, XIAO N J, NING D L, SHI Z, ZHOU X S, WU L Y, YANG Y F, TIEDJE J M, ZHOU J Z. Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021, 11(4): 343-348.

doi: 10.1038/s41558-021-00989-9
[6]
DONG F, HU J H, SHI Y Z, LIU M Y, ZHANG Q F, RUAN J Y. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant Physiology and Biochemistry, 2019, 138: 48-57.

doi: S0981-9428(19)30066-X pmid: 30849677
[7]
ZHANG W J, NI K, LONG L Z, RUAN J Y. Nitrogen transport and assimilation in tea plant (Camellia sinensis): A review. Frontiers in Plant Science, 2023, 14: 1249202.

doi: 10.3389/fpls.2023.1249202
[8]
WANG Z T, GENG Y B, LIANG T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Science of The Total Environment, 2020, 713: 136439.

doi: 10.1016/j.scitotenv.2019.136439
[9]
WU Y Z, LI Y, FU X Q, SHEN J L, CHEN D, WANG Y, LIU X L, XIAO R L, WEI W X, WU J S. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical Central China. Environmental Science and Pollution Research, 2018, 25(25): 25580-25590.

doi: 10.1007/s11356-018-2646-2
[10]
苏有健, 廖万有, 丁勇, 王宏树, 夏先江. 不同氮营养水平对茶叶产量和品质的影响. 植物营养与肥料学报, 2011, 17(6): 1430-1436.
SU Y J, LIAO W Y, DING Y, WANG H S, XIA X J. Effects of nitrogen fertilization on yield and quality of tea. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1430-1436. (in Chinese)
[11]
LIU M Y, BURGOS A, MA L F, ZHANG Q F, TANG D D, RUAN J Y. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biology, 2017, 17(1): 165.

doi: 10.1186/s12870-017-1111-6
[12]
王钊, 张冰, 董思奇, 胡雨翕, 齐书宇, 冯国忠, 高强, 周雪. 长期施用氮肥对黑土和风沙土根际微生物群落结构及功能的影响. 中国农业科学, 2025, 58(3): 520-536. doi: 10.3864/j.issn.0578-1752.2025.03.009.
WANG Z, ZHANG B, DONG S Q, HU Y X, QI S Y, FENG G Z, GAO Q, ZHOU X. Effects of long-term nitrogen fertilizer application on the rhizosphere microbial community structure and function in black soil and sandy soil. Scientia Agricultura Sinica, 2025, 58(3): 520-536. doi: 10.3864/j.issn.0578-1752.2025.03.009. (in Chinese)
[13]
WANG Z, TAO T T, WANG H, CHEN J, SMALL G E, JOHNSON D, CHEN J H, ZHANG Y J, ZHU Q C, ZHANG S M, et al. Forms of nitrogen inputs regulate the intensity of soil acidification. Global Change Biology, 2023, 29(14): 4044-4055.

doi: 10.1111/gcb.16746 pmid: 37186143
[14]
DAI Z M, SU W Q, CHEN H H, BARBERÁN A, ZHAO H C, YU M J, YU L, BROOKES P C, SCHADT C W, CHANG S X, XU J M. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro- ecosystems across the globe. Global Change Biology, 2018, 24(8): 3452-3461.

doi: 10.1111/gcb.2018.24.issue-8
[15]
TANG B, ROCCI K S, LEHMANN A, RILLIG M C. Nitrogen increases soil organic carbon accrual and alters its functionality. Global Change Biology, 2023, 29(7): 1971-1983.

doi: 10.1111/gcb.16588 pmid: 36607159
[16]
HE J H, TAN X P, NIE Y X, MA L, LIU J X, LU X K, MO J M, LELOUP J, NUNAN N, YE Q, SHEN W J. Distinct responses of abundant and rare soil bacteria to nitrogen addition in tropical forest soils. Microbiology Spectrum, 2023, 11(1): e0300322.

doi: 10.1128/spectrum.03003-22
[17]
WANG X D, FENG J G, AO G, QIN W K, HAN M G, SHEN Y W, LIU M L, CHEN Y, ZHU B. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biology and Biochemistry, 2023, 179: 108982.

doi: 10.1016/j.soilbio.2023.108982
[18]
季凌飞, 倪康, 马立锋, 陈兆杰, 赵远艳, 阮建云, 郭世伟. 不同施肥方式对酸性茶园土壤真菌群落的影响. 生态学报, 2018, 38(22): 8158-8166.
JI L F, NI K, MA L F, CHEN Z J, ZHAO Y Y, RUAN J Y, GUO S W. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil. Acta Ecologica Sinica, 2018, 38(22): 8158-8166. (in Chinese)
[19]
TANG S, ZHOU J J, PAN W K, TANG R, MA Q X, XU M, QI T, MA Z B, FU H R, WU L H. Impact of N application rate on tea (Camellia sinensis) growth and soil bacterial and fungi communities. Plant and Soil, 2022, 475(1): 343-359.

doi: 10.1007/s11104-022-05372-x
[20]
YANG X D, MA L F, JI L F, SHI Y Z, YI X Y, YANG Q L, NI K, RUAN J Y. Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea (Camellia sinensis L.) plantation in China. Plant and Soil, 2019, 444(1): 409-426.

doi: 10.1007/s11104-019-04291-8
[21]
CHEN Y Z, WANG F, WU Z D, JIANG F Y, YU W Q, YANG J, CHEN J M, JIAN G T, YOU Z M, ZENG L T. Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical China. Metabolites, 2021, 11(3): 146.

doi: 10.3390/metabo11030146
[22]
LI P, XUE Y, SHI J L, PAN A H, TANG X M, MING F. The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties. Microbiome, 2018, 6(1): 184.

doi: 10.1186/s40168-018-0570-9 pmid: 30336777
[23]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[24]
NGUYEN N H, SONG Z W, BATES S T, BRANCO S, TEDERSOO L, MENKE J, SCHILLING J S, KENNEDY P G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016, 20: 241-248.

doi: 10.1016/j.funeco.2015.06.006
[25]
DENG Y, JIANG Y H, YANG Y F, HE Z L, LUO F, ZHOU J Z. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13: 113.
[26]
NING D L, YUAN M T, WU L W, ZHANG Y, GUO X, ZHOU X S, YANG Y F, ARKIN A P, FIRESTONE M K, ZHOU J Z. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 2020, 11: 4717.

doi: 10.1038/s41467-020-18560-z pmid: 32948774
[27]
ZHANG J, ZHANG B G, LIU Y, GUO Y Q, SHI P, WEI G H. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Science of The Total Environment, 2018, 644: 791-800.

doi: 10.1016/j.scitotenv.2018.07.016
[28]
MA L F, YANG X D, SHI Y Z, YI X Y, JI L F, CHENG Y, NI K, RUAN J Y. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Applied Soil Ecology, 2021, 166: 103976.

doi: 10.1016/j.apsoil.2021.103976
[29]
CAI J J, QIU Z H, LIAO J M, LI A S, CHEN J H, WU Z H, KHAN W, SUN B M, LIU S Q, ZHENG P. Comprehensive analysis of the yield and leaf quality of fresh tea (Camellia sinensis cv. Jin Xuan) under different nitrogen fertilization levels. Foods, 2024, 13(13): 2091.

doi: 10.3390/foods13132091
[30]
YING J Y, LI X X, WANG N N, LAN Z C, HE J Z, BAI Y F. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology and Biochemistry, 2017, 107: 10-18.

doi: 10.1016/j.soilbio.2016.12.023
[31]
TIAN D S, NIU S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10(2): 024019.

doi: 10.1088/1748-9326/10/2/024019
[32]
ZHANG X M, LIU W, ZHANG G M, JIANG L, HAN X G. Mechanisms of soil acidification reducing bacterial diversity. Soil Biology and Biochemistry, 2015, 81: 275-281.

doi: 10.1016/j.soilbio.2014.11.004
[33]
LEKBERG Y, ARNILLAS C A, BORER E T, BULLINGTON L S, FIERER N, KENNEDY P G, LEFF J W, LUIS A D, SEABLOOM E W, HENNING J A. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nature Communications, 2021, 12: 3484.

doi: 10.1038/s41467-021-23605-y pmid: 34108462
[34]
CHEN L, SWENSON N G, JI N N, MI X C, REN H B, GUO L D, MA K P. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 2019, 366(6461): 124-128.

doi: 10.1126/science.aau1361 pmid: 31604314
[35]
SEABLOOM E W, KINKEL L, BORER E T, HAUTIER Y, MONTGOMERY R A, TILMAN D. Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20(4): 505-512.

doi: 10.1111/ele.12754 pmid: 28295970
[36]
BEVER J D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157(3): 465-473.

doi: 10.1046/j.1469-8137.2003.00714.x pmid: 33873396
[37]
CAPPELLI S L, PICHON N A, KEMPEL A, ALLAN E. Sick plants in grassland communities: A growth-defense trade-off is the main driver of fungal pathogen abundance. Ecology Letters, 2020, 23(9): 1349-1359.

doi: 10.1111/ele.13537 pmid: 32455502
[38]
SEMCHENKO M, LEFF J W, LOZANO Y M, SAAR S, DAVISON J, WILKINSON A, JACKSON B G, PRITCHARD W J, DE LONG J R, OAKLEY S, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4(11): eaau4578.

doi: 10.1126/sciadv.aau4578
[39]
LIU X, ZHANG L, HUANG M J, ZHOU S R. Plant diversity promotes soil fungal pathogen richness under fertilization in an alpine meadow. Journal of Plant Ecology, 2021, 14(2): 323-336.

doi: 10.1093/jpe/rtaa099
[40]
靳海洋, 闫雅倩, 张德奇, 杨程, 岳俊芹, 李向东, 邵运辉, 方保停, 王汉芳, 秦峰. 秸秆还田下不同追氮量对麦田土壤真菌群落结构和生态网络的影响. 环境科学, 2023, 44(2): 1085-1094.
JIN H Y, YAN Y Q, ZHANG D Q, YANG C, YUE J Q, LI X D, SHAO Y H, FANG B T, WANG H F, QIN F. Effects of different topdressing nitrogen rates on soil fungal community structure and ecological network in wheat field under crop residue retention. Environmental Science, 2023, 44(2): 1085-1094. (in Chinese)

doi: 10.1021/es9019645
[41]
CHEN Y L, XU Z W, FENG K, YANG G W, FU W, CHEN B D. Nitrogen and water addition regulate soil fungal diversity and co- occurrence networks. Journal of Soils and Sediments, 2020, 20(8): 3192-3203.

doi: 10.1007/s11368-020-02629-9
[42]
XUN W B, LI W, XIONG W, REN Y, LIU Y P, MIAO Y Z, XU Z H, ZHANG N, SHEN Q R, ZHANG R F. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 2019, 10: 3833.

doi: 10.1038/s41467-019-11787-5 pmid: 31444343
[43]
TANG H Q, ZHANG N, NI H W, XU X F, WANG X Y, SUI Y Y, SUN B, LIANG Y T. Increasing environmental filtering of diazotrophic communities with a decade of latitudinal soil transplantation. Soil Biology and Biochemistry, 2021, 154: 108119.

doi: 10.1016/j.soilbio.2020.108119
[44]
刘蕾, 肖广敏, 王凌, 茹淑华, 张国印, 孙世友. 设施蔬菜土壤丛枝菌根真菌多样性及群落构建的季相变化. 土壤学报, 2024, 61(1): 200-210.
LIU L, XIAO G M, WANG L, RU S H, ZHANG G Y, SUN S Y. Variations in the diversity and community assembly of arbuscular mycorrhizal fungi in greenhouse soils during the growing season. Acta Pedologica Sinica, 2024, 61(1): 200-210. (in Chinese)
[45]
WANG X, ZHANG Q, ZHANG Z J, LI W J, LIU W C, XIAO N J, LIU H Y, WANG L Y, LI Z X, MA J, et al. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta, 2023, 2(2): e106.

doi: 10.1002/imt2.106 pmid: 38868425
[46]
XU M J, ZHU X Z, CHEN S P, PANG S, LIU W, GAO L L, YANG W, LI T T, ZHANG Y H, LUO C, HE D D, WANG Z P, FAN Y, HAN X G, ZHANG X M. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience, 2022, 25(3): 103893.

doi: 10.1016/j.isci.2022.103893
[47]
LIU S, RU J Y, GUO X, GAO Q, DENG S H, LEI J S, SONG J, ZHAI C C, WAN S Q, YANG Y F. Altered precipitation and nighttime warming reshape the vertical distribution of soil microbial communities. mSystems, 2025, 10(5): e0124824.

doi: 10.1128/msystems.01248-24
[48]
ZHONG Y, SORENSEN P O, ZHU G Y, JIA X Y, LIU J, SHANGGUAN Z P, WANG R W, YAN W M. Differential microbial assembly processes and co-occurrence networks in the soil-root continuum along an environmental gradient. iMeta, 2022, 1(2): e18.

doi: 10.1002/imt2.18 pmid: 38868564
[49]
LIANG Y T, NING D L, LU Z M, ZHANG N, HALE L, WU L Y, CLARK I M, MCGRATH S P, STORKEY J, HIRSCH P R, SUN B, ZHOU J Z. Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biology and Biochemistry, 2020, 151: 108023.

doi: 10.1016/j.soilbio.2020.108023
[50]
YANG H L, CHENG L, CHE L, SU Y Z, LI Y L. Nutrients addition decreases soil fungal diversity and alters fungal guilds and co- occurrence networks in a semi-arid grassland in northern China. Science of The Total Environment, 2024, 926: 172100.

doi: 10.1016/j.scitotenv.2024.172100
[51]
LIU W X, LIU L L, YANG X, DENG M F, WANG Z, WANG P D, YANG S, LI P, PENG Z Y, YANG L, JIANG L. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 2021, 27(16): 3939-3950.

doi: 10.1111/gcb.v27.16
[52]
LIU Y J, JOHNSON N C, MAO L, SHI G X, JIANG S J, MA X J, DU G Z, AN L Z, FENG H Y. Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility. Soil Biology and Biochemistry, 2015, 89: 196-205.

doi: 10.1016/j.soilbio.2015.07.007
[1] LI WeiJing, WANG HongYuan, XU Yang, LI Hao, ZHAI LiMei, LIU HongBin. Microbial Community Structure Characteristics at the Water-Soil Interface in Rice-Crab Co-Culture System [J]. Scientia Agricultura Sinica, 2024, 57(18): 3551-3567.
[2] LI HaiPeng, DU WuYan, WU HanQian, ZHANG Jie, MENG HuiSheng, HONG JianPing, XU MingGang, HAO XianJun, GAO WenJun. Different Manures Affect Soil Nutrients and Bacterial Community Structure in Mining Reclamation Area [J]. Scientia Agricultura Sinica, 2024, 57(16): 3207-3219.
[3] LIU Lei, SHI JianShuo, ZHANG GuoYin, GAO Jing, LI Pin, REN Yanli, WANG LiYing. Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil [J]. Scientia Agricultura Sinica, 2023, 56(18): 3615-3628.
[4] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[5] DUAN Jian-Jun, LAI Fei, WANG Xiao-Li, ZHANG Chong-Yu, FENG Yue-Hua. Correction of Kriging’s Smoothing Effect and Suitability of Selenium- Rich Tea Garden in Fenggang County of Guizhou Province [J]. Scientia Agricultura Sinica, 2013, 46(3): 564-574.
[6] CHEN Zong-mao, HAN Bao-yu. Review and Prospect on the Research of Insect Chemical Ecology in Tea Garden [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3137-3142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!