Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1775-1786.doi: 10.3864/j.issn.0578-1752.2023.09.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

The Mechanism of Effects of Konjac Gum on the Gel Property and Water Holding Property of Pork Myofibrillar Protein Based on Phase Separation Behavior and Moisture Stabilization

LUO Cheng1,2(), WANG Huan1,2, CHEN YinJi1, LI Chao2, ZHUANG XinBo1()   

  1. 1 College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023
    2 State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 210041
  • Received:2022-08-11 Accepted:2022-09-29 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】 The purpose of this experiment was to study the effects of konjac gum on the microstructure and phase-separated structure of pork myofibrillar proteins, and then to explain the regulation mechanism of konjac gum on the gel property and water holding property of myofibrillar proteins. 【Method】 The simulated system with different ratios of konjac gum and myofibrillar protein was used to measure the texture property, stress and strain during fracture deformation, the water distribution and water holding capacity of the composite gel, and to observe the phase separation behavior of konjac gum and myofibrillar protein and the microstructure of myofibrillar protein gel network. 【Result】 When the addition ratio of konjac gum was less than 0.8%, the gel strength, final value of storage modulus and stress at fracture deformation of the composite protein gels significantly increased to 179.21 g, 1 192 Pa and 9 139.37 Pa respectively with the increase of the addition ratio (P<0.05). When the addition ratio of konjac gum was greater than or equal to 0.8%, the gel strength, storage modulus, stress and strain at fracture deformation of the composite protein gels significantly decreased to 83.03 g, 566 Pa, 4 964.07 Pa and 0.64 (P<0.05) respectively with the increase of the addition ratio. Low-field NMR results showed that the relaxation time and the percentage of free water in the composite gel system of immobilized water decreased significantly (P<0.05) with the increase of the addition ratio of konjac gum less than 0.8%, while the percentage of immobilized water increased significantly (P<0.05), and the water holding capacity of the composite gel increased significantly from 67.18% to 80.47% in the control group (P<0.05). In contrast, the high percentage addition of konjac gum (greater than or equal to 0.8%) significantly increased the relaxation time and the percentage of free water in the immobilized water (P<0.05), while the percentage of immobilized water significantly decreased (P<0.05), and the water holding capacity significantly decreased to 55.24% (P<0.05). Paraffin sections showed konjac gum was embedded in the composite protein gel backbone in a physically filled form with many cavities of various sizes and shapes. Scanning electron microscopy showed that the cavities and gullies in the protein gel network structure of the control group were filled with many moisture phases. The addition ratio of konjac gum less than 0.8% could reduce the interlocking water gullies in the protein network structure and make the protein gel network structure denser and more homogeneous. The high addition of konjac gum (greater than or equal to 0.8%) increased the number and volume of water gullies in the system, resulting in a looser microstructure of the composite gel. The results of image processing analysis showed that the fractal dimension of the composite protein gel network structure with 0.4% konjac gum was the highest (P<0.05), and the lowest (P<0.05) with the lacunary value of 0.264.【Conclusion】The low concentration of konjac gum on myofibrillar protein gel property and water-holding property had a significant improvement effect, but the upper limit of the addition of konjac gum ratio was 0.8%, because a high percentage of the addition (greater than or equal to 0.8%) would make the composite protein gel texture deteriorated.

Key words: konjac gum, gelation property, textural property, myofibrillar protein

Fig. 1

Effects of konjac gum on the color and water holding capacity of MP gels Different lowercase letters indicate significant differences (P<0.05) between groups with different addition ratios. The same as below"

Table 1

Effects of konjac gum on the texture, fractal dimension and lacunary of MP gels"

组别
Group
凝胶强度
Gel strength (g)
储能模量终值
Final G' (Pa)
分形维度
Fracture dimension
缺项值
Lacunary value
0% 113.24±6.82c 889±9c 2.773±0.001c 0.326±0.017e
0.05% 121.74±7.73d 926±13d 2.778±0.005d 0.315±0.009d
0.1% 136.81±11.62e 1049±25e 2.780±0.003e 0.279±0.003c
0.2% 151.22±8.71f 1114±29f 2.794±0.002f 0.271±0.015b
0.4% 179.21±17.51g 1192±24g 2.809±0.004g 0.264±0.010a
0.8% 96.87±8.03b 629±11b 2.760±0.008b 0.332±0.007f
1.2% 83.03±12.02a 566±6a 2.756±0.003a 0.344±0.028g

Fig. 2

Effects of konjac gum on stress and strain during fracture deformation of MP gels"

Fig. 3

Changes in storage modulus G′ of MP emulsions with konjac gum"

Table 2

Relaxation time and corresponding peak areas of MP gels with konjac gum"

组别 Group T2b (ms) PT2b (%) T21 (ms) PT21 (%) T22 (ms) PT22 (%)
0 4.91±0.55c 4.47±0.29e 349.94±4.08e 78.51±1.92c 2190.46±19.62a 17.02±1.63e
0.05% 2.75±0.61a 3.34±0.22c 313.54±9.45d 81.12±1.36d 3355.72±26.81g 15.54±1.14d
0.1% 6.58±1.67f 2.89±0.53b 293.24±13.62c 84.27±0.49e 3105.65±43.49f 12.84±1.02c
0.2% 3.75±0.85b 3.82±0.39d 270.12±16.68b 86.53±0.73f 2350.72±33.45b 9.65±1.12b
0.4% 5.75±1.61e 2.49±0.81a 251.61±4.32a 89.87±0.47g 2795.48±23.85d 7.64±1.28a
0.8% 4.88±0.87c 5.98±0.20f 389.48±5.02f 74.64±0.63b 2930.96±18.75e 19.38±0.43f
1.2% 5.14±0.29d 6.39±0.15g 403.70±17.26g 71.76±1.46a 2440.78±43.75c 21.85±1.31g

Fig. 4

The spatial distribution of konjac gum in the MP gels A: Control group; B: Add 0.05% of konjac gum; C: Add 0.1% of konjac gum; D: Add 0.2% of konjac gum; E: Add 0.4% of konjac gum; F: Add 0.8% of konjac gum; G: Add 1.2% of konjac gum"

Fig. 5

Scanning electron micrographs of MP gels with various konjac gum addition A: Control group; B: Add 0.05% of konjac gum; C: Add 0.1% of konjac gum; D: Add 0.2% of konjac gum; E: Add 0.4% of konjac gum; F: Add 0.8% of konjac gum; G: Add 1.2% of konjac gum"

Fig. 6

The mechanism of the effect of konjac gum on the gel property and water holding property of MP"

[1]
VAN DEN BERG L, VAN VLIET T, VAN DER LINDEN E, VAN BOEKEL M A J S, VAN DE VELDE F. Breakdown properties and sensory perception of whey proteins/polysaccharide mixed gels as a function of microstructure. Food Hydrocolloids, 2007, 21(5/6): 961-976.

doi: 10.1016/j.foodhyd.2006.08.017
[2]
SONG X Y, CHIOU B S, XIA Y X, CHEN M S, LIU F, ZHONG F. The improvement of texture properties and storage stability for kappa carrageenan in developing vegan gummy candies. Journal of the Science of Food and Agriculture, 2022, 102(9): 3693-3702.

doi: 10.1002/jsfa.v102.9
[3]
ERSCH C, TER LAAK I, VAN DER LINDEN E, VENEMA P, MARTIN A. Modulating fracture properties of mixed protein systems. Food Hydrocolloids, 2015, 44: 59-65.

doi: 10.1016/j.foodhyd.2014.09.009
[4]
KIM H W, MILLER D K, LEE Y J, KIM Y H B. Effects of soy hull pectin and insoluble fiber on physicochemical and oxidative characteristics of fresh and frozen/thawed beef patties. Meat Science, 2016, 117: 63-67.

doi: 10.1016/j.meatsci.2016.02.035
[5]
CUI B, MAO Y Y, LIANG H S, LI Y, LI J, YE S X, CHEN W X, LI B. Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat. International Journal of Biological Macromolecules, 2022, 206: 481-488.

doi: 10.1016/j.ijbiomac.2022.02.157 pmid: 35245574
[6]
ZHAO S M, LI Z, LIU Y, ZHAO Y N, YUAN X R, KANG Z L, ZHU M M, MA H J. High-pressure processing influences the conformation, water distribution, and gel properties of pork myofibrillar proteins containing Artemisia sphaerocephala Krasch gum. Food Chemistry: X, 2022, 14: 100320.

doi: 10.1016/j.fochx.2022.100320
[7]
MORTENSEN A, AGUILAR F, CREBELLI R, GALTIER P, GOTT D, LINDTNER O, MOLDEUS P, MOSESSO P, OSKARSSON A. Re-evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. European Food Safety Authority Journal, 2017, 15(6): 4789.
[8]
HAN M Y, WANG P, XU X L, ZHOU G H. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Research International, 2014, 62: 1175-1182.

doi: 10.1016/j.foodres.2014.05.062
[9]
WU C H, YUAN C H, CHEN S G, LIU D H, YE X Q, HU Y Q. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chemistry, 2015, 179: 222-231.

doi: 10.1016/j.foodchem.2015.01.125
[10]
ZHUANG X B, WANG L J, JIANG X P, CHEN Y J, ZHOU G H. The effects of three polysaccharides on the gelation properties of myofibrillar protein: Phase behaviour and moisture stability. Meat Science, 2020, 170: 108228.

doi: 10.1016/j.meatsci.2020.108228
[11]
JIANG S, ZHAO S C, JIA X W, WANG H, ZHANG H, LIU Q, KONG B H. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels. Food Chemistry, 2020, 311: 126018.

doi: 10.1016/j.foodchem.2019.126018
[12]
ZHUANG X B, JIANG X P, ZHOU H Y, CHEN Y J, ZHAO Y Y, YANG H S, ZHOU G H. Insight into the mechanism of physicochemical influence by three polysaccharides on myofibrillar protein gelation. Carbohydrate Polymers, 2020, 229: 115449.

doi: 10.1016/j.carbpol.2019.115449
[13]
张楠, 庄昕波, 黄子信, 陈玉仑, 李春保, 周光宏. 低场核磁共振技术研究猪肉冷却过程中水分迁移规律. 食品科学, 2017, 38(11): 103-109.

doi: 10.7506/spkx1002-6630-201711017
ZHANG N, ZHUANG X B, HUANG Z X, CHEN Y L, LI C B, ZHOU G H. Change in water mobility in pork during postmortem chilling analyzed by low-field nuclear magnetic resonance. Food Science, 2017, 38(11): 103-109. (in Chinese)

doi: 10.7506/spkx1002-6630-201711017
[14]
吴菊清, 魏朝贵, 韩敏义, 徐幸莲, 周光宏. NaCl对猪肉肌原纤维蛋白乳化体系加工特性的影响. 南京农业大学学报, 2014, 37(6): 83-88.
WU J Q, WEI C G, HAN M Y, XU X L, ZHOU G H. Effect of NaCl on processing properties of pork myofibrillar protein emulsion. Journal of Nanjing Agricultural University, 2014, 37(6): 83-88. (in Chinese)
[15]
ZHUANG X B, HAN M Y, KANG Z L, WANG K, BAI Y, XU X L, ZHOU G H. Effects of the sugarcane dietary fiber and pre-emulsified sesame oil on low-fat meat batter physicochemical property, texture, and microstructure. Meat Science, 2016, 113: 107-115.

doi: 10.1016/j.meatsci.2015.11.007 pmid: 26641280
[16]
ZHUANG X B, HAN M Y, BAI Y, LIU Y F, XING L J, XU X L, ZHOU G H. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocolloids, 2018, 74: 219-226.

doi: 10.1016/j.foodhyd.2017.08.015
[17]
杨玉玲, 游远, 彭晓蓓, 陈银基. 加热对鸡胸肉肌原纤维蛋白结构与凝胶特性的影响. 中国农业科学, 2014, 47(10): 2013-2020. doi: 10.3864/j.issn.0578-1752.2014.10.015.

doi: 10.3864/j.issn.0578-1752.2014.10.015
YANG Y L, YOU Y, PENG X B, CHEN Y J. Influence of heating on structure and gel properties of myofibrillar proteins from chicken breast muscle. Scientia Agricultura Sinica, 2014, 47(10): 2013-2020. doi: 10.3864/j.issn.0578-1752.2014.10.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.10.015
[18]
LIU K, STIEGER M, VAN DER LINDEN E, VAN DE VELDE F. Fat droplet characteristics affect rheological, tribological and sensory properties of food gels. Food Hydrocolloids, 2015, 44: 244-259.

doi: 10.1016/j.foodhyd.2014.09.034
[19]
郝梦, 毛书灿, 周志, 汪兰, 熊光权, 石柳. 热处理和蛋白浓度对肌原纤维蛋白乳液的稳定性和流变特性的影响. 食品工业科技, 2022, 43(23): 56-63.
HAO M, MAO S C, ZHOU Z, WANG L, XIONG G Q, SHI L. Effects of heat treatment and protein concentration on stability and rheological properties of myofibrillar protein emulsion. Science and Technology of Food Industry, 2022, 43(23): 56-63. (in Chinese)
[20]
OLIVER L, BERNDSEN L, VAN AKEN G A, SCHOLTEN E. Influence of droplet clustering on the rheological properties ofemulsion-filled gels. Food Hydrocolloids, 2015, 50: 74-83.

doi: 10.1016/j.foodhyd.2015.04.001
[21]
ZHOU H Y, ZHUANG X B, ZHOU C Y, DING D M, LI C B, BAI Y, ZHOU G H. Effect of fermented blueberry on the oxidative stability and volatile molecule profiles of emulsion-type sausage during refrigerated storage. Asian-Australasian Journal of Animal Sciences, 2020, 33(5): 812-824.

doi: 10.5713/ajas.19.0094
[22]
AZMOON E, SABERI F, KOUHSARI F, AKBARI M, KIELISZEK M, VAKILINEZAM A. The effects of hydrocolloids-protein mixture as a fat replacer on physicochemical characteristics of sugar-free muffin cake: Modeling and optimization. Foods, 2021, 10(7): 1549.

doi: 10.3390/foods10071549
[23]
陈晨, 汪佳佳, 王立健, 庄昕波, 陈银基. 油脂预乳化液替代脂肪对乳化肠品质的影响. 食品科学, 2021, 42(16): 8-13.
CHEN C, WANG J J, WANG L J, ZHUANG X B, CHEN Y J. Effect of replacement of pork fat with pre-emulsified oil on the quality of emulsified sausage. Food Science, 2021, 42(16): 8-13. (in Chinese)

doi: 10.7506/spkx1002-6630-20200805-077
[24]
HUANG M Y, XU Y J, XU L N, BAI Y, XU X L. Interactions of water-soluble myofibrillar protein with chitosan: Phase behavior, microstructure and rheological properties. Innovative Food Science & Emerging Technologies, 2022, 78: 103013.
[25]
HU Y, WANG Q, SUN F D, CHEN Q, XIA X F, LIU Q, KONG B H. Role of partial replacement of NaCl by KCl combined with other components on structure and gel properties of porcine myofibrillar protein. Meat Science, 2022, 190: 108832.

doi: 10.1016/j.meatsci.2022.108832
[26]
王立健, 罗程, 潘雪峰, 陈霞, 陈银基. 纤维素替代淀粉对肌原纤维蛋白凝胶特性的影响. 中国农业科学, 2022, 55(11): 2227-2238. doi: 10.3864/j.issn.0578-1752.2022.11.012.

doi: 10.3864/j.issn.0578-1752.2022.11.012
WANG L J, LUO C, PAN X F, CHEN X, CHEN Y J. Effects of cellulose replacing starch on the gel properties of myofibrillar protein. Scientia Agricultura Sinica, 2022, 55(11): 2227-2238. doi: 10.3864/ j.issn.0578-1752.2022.11.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.11.012
[27]
庄昕波, 陈银基, 周光宏. 改性甘蔗膳食纤维对猪肉肌原纤维蛋白凝胶特性的影响. 中国农业科学, 2021, 54(15): 3320-3330. doi: 10.3864/j.issn.0578-1752.2021.15.015.

doi: 10.3864/j.issn.0578-1752.2021.15.015
ZHUANG X B, CHEN Y J, ZHOU G H. The mechanism of myofibrillar protein gel functionality influenced by modified sugarcane dietary fiber. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330. doi: 10.3864/j.issn.0578-1752.2021.15.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.15.015
[1] GUO YuChen, DONG Ming, ZENG XianMing, TIAN HuiXin, YIN JiaQi, HOU YuKe, BAI Yun, TANG ChangBo, HAN MinYi, XU XingLian. Effects of Pulsed Electric Field on Gelation Properties of PSE-Like Chicken Myosin: A Molecular Dynamics Simulation Analysis [J]. Scientia Agricultura Sinica, 2023, 56(4): 741-753.
[2] WANG LiJian,LUO Cheng,PAN XueFeng,CHEN Xia,CHEN YinJi. Effects of Cellulose Replacing Starch on the Gel Properties of Myofibrillar Protein [J]. Scientia Agricultura Sinica, 2022, 55(11): 2227-2238.
[3] HAN KeYing,FENG Xiao,YANG YuLing,LI ShanShan,WEI SuMeng,CHEN YuMin. Effects of Camellia Oil on the Properties of Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2021, 54(20): 4446-4455.
[4] LI BaoLing,LI Ying,FAN Xin,MA WenHui,CAO YunGang. Synergistic Enhancement of Gelling Properties of Oxidatively Damaged Myofibrillar Protein by Sodium Pyrophosphate and Transglutaminase [J]. Scientia Agricultura Sinica, 2021, 54(16): 3527-3536.
[5] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[6] YuLing YANG, Lei ZHOU, Yuan YOU, XiaoZhi TANG, SuMeng WEI. The Effects of Oxidation on Textural Properties and Water Holding Capacity of Heat-Induced Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2018, 51(18): 3570-3581.
[7] ZHANG Xing, YANG YuLing, MA Yun, WANG JingYu. Effects of pH on the Non-Covalent Forces and Structure of Myofibrillar Protein and Heat Induced Gel [J]. Scientia Agricultura Sinica, 2017, 50(3): 564-573.
[8] WANG JingYu, YANG YuLing, KANG DaCheng, TANG XiaoZhi, ZHANG Xing, MA Yun, NI WenXi. Effects of Ultrasound on Chemical Forces and Water Holding Capacity Study of Heat-Induced Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2017, 50(12): 2349-2358.
[9] CHEN Li-juan, LI Xin, LI Zheng, LI Pei-di, LI Zhong-wen, ZHANG De-quan. Protein Phosphorylation on the Function of Myofibrillar Proteins in Mutton Muscle [J]. Scientia Agricultura Sinica, 2016, 49(7): 1360-1370.
[10] ZHANG Yan, LI Xin, LI Zheng, LI Meng, LIU Yong-feng, ZHANG De-quan. Effects of Controlled Freezing Point Storage on the Protein Phosphorylation Level [J]. Scientia Agricultura Sinica, 2016, 49(22): 4429-4440.
[11] WEI Xiu-li, XIE Xiao-lei, ZHANG Chun-hui, LI Xia, WANG Chun-qing . The Variations in μ-Calpain and Physico-Chemical Characteristics of Myofibrillar Proteins in Postmortem Porcine Muscle [J]. Scientia Agricultura Sinica, 2015, 48(12): 2428-2438.
[12] YANG Yu-Ling, YOU Yuan, PENG Xiao-Bei, CHEN Yin-Ji. Influence of Heating on Structure and Gel Properties of Myofibrillar Proteins from Chicken Breast Muscle [J]. Scientia Agricultura Sinica, 2014, 47(10): 2013-2020.
[13] LI Yin, SUN Hong-Mei, ZHANG Chun-Hui, BAI Yue-Yu, WANG Zhen-Yu. Analysis of Frozen Beef Protein Oxidation Effect During Thawing [J]. Scientia Agricultura Sinica, 2013, 46(7): 1426-1433.
[14] NI Na-12, WANG Zhen-Yu-1, HAN Zhi-Hui-3, HE Fan-1, PAN Han-1, MU Guo-Feng-1, ZHANG De-Quan-1. Effect of pH on Heat-Induced Gel of Myofibrillar Protein from Lamb M. longissimus dorsi Muscle [J]. Scientia Agricultura Sinica, 2013, 46(17): 3680-3687.
[15] FEI Ying,HAN Min-yi,YANG Ling-han,ZHOU Guang-hong,XU Xing-lian,PENG Zeng-qi
. Studies on the Secondary Structure and Heat-Induced Gelation of Pork Myofibrillar Proteins as Affected by pH
[J]. Scientia Agricultura Sinica, 2010, 43(1): 164-170 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!