Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1859-1867.doi: 10.3864/j.issn.0578-1752.2022.09.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species

ZHANG Rui(),ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue*()   

  1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2020-06-09 Revised:2022-03-16 Online:2022-05-01 Published:2022-05-19
  • Contact: Xue GAO E-mail:1245103873@qq.com;gaoxue76@126.com

Abstract:

【Objective】The repetitive sequence is an important part of eukaryotic genomes and plays an important role in species evolution, gene genetic variation, and transcriptional regulation. The purpose of this study was to reveal the characteristics of tandem repeats in bovinae by investigating the evolutionary relationship between transposons and tandem repeats, so as to provide the theoretical support for the study of tandem repeats in bovinae. 【Method】 In this paper, the six genomes were selected as research object, including Bos taurus, Bos indicus, Bos mutus, Bubalus bubalis, Bison bison and Bos frontalis. The transposable elements and tandem repeats in six genomes was identified through TRF and RepeatMasker software. Meanwhile, the sequence similarity between the two types of tandem repeats was analyzed by BLAST, and single-locus tandem repeats (single-locus TRs, mlTRs), multiple-locus tandem repeats (multiple-locus TRs, mlTRs) and the characteristics of tandem repeat for the transposable elements were investigated too. 【Result】 (1) In the six bovinae genomes, the percent of tandem repeats in Bos taurus was the highest (49.13%), followed by Bos frontalis (46.82%), Bubalus bubalis (46.23%), Bos indicus (42.70%), Bos mutus (42.53%), and Bison bison (42.36%), in which the content of transposable elements in the genome ranged from 40.57%-45.71%, and was higher than that of tandem repeats (1.50%-3.42%). (2) In the tandem repeats, the proportion of mlTRs (76%-99%) was significantly higher than that of slTRs(1%-24%), indicating that the mlTRs was the main component of tandem repeats in six bovinae species. (3) The proportion of TE-derived tandem repeats was 43% to 84%, among them mutiple-locus tandem repeats could reach up to 94%. (4) The analysis of TRs-related transposable elements and their activity showed that these transposable elements were mainly from non-Long Terminal Repeats (non-LTR, including SINE and LINE) and long interspersed nuclear element (LINE), among which SINE/core-RTE (mainly BOV-A2) had the highest number (14 423-24 193) and relative number (4.06%-6.77%), which was considered to be the youngest and the most dynamic transposable elements. (5) The study on transposable elements of tandem repeats’ characteristics indicated that BovB and L1_BT contained a large number of tandem repeats in 0-600 bp and 1 500 bp-2 700 bp, respectively, which were more than 93% and 87% consistent with the consensus sequence, respectively, and the sequences were located in the non-coding region. 【Conclusion】 The repetitive sequence had similar distribution characteristics, non-LTR was an important source of TRs-related TEs, and SINE/Core-RTE(mainly BOV-A2) was the youngest and most dynamic transposable elements. At the same time, the tandem repeats could be used as internal structure component of transposable elements, indicating that tandem repeats and transposable elements interacted with each other in the process of genome evolution.

Key words: bovinae, transposable elements, tandem repeats, evolution

Table 1

The distribution of repeats in the bovinae genomes"

物种
Species
重复序列
(%)
转座子 TEs (%) 串联重复序列 TRs (%)
SINE LINE LTR DNA Total Micro-satellite Mini-satellite Satellite Total
大额牛 Bos frontalis 46.66 11.44 27.38 3.63 2.11 44.56 0.74 0.45 0.90 2.10
普通牛 Bos taurus 49.13 11.52 27.32 4.75 2.12 45.71 0.85 1.98 0.59 3.42
瘤牛 Bos indicus 42.70 10.82 25.07 3.38 2.01 41.28 0.67 0.26 0.48 1.42
牦牛 Bos mutus 42.34 11.51 23.4 3.49 2.17 40.57 0.75 0.33 0.70 1.77
水牛 Bubalus bubalis 46.82 11.58 27.48 3.65 2.15 44.86 0.82 0.51 0.63 1.96
野牛 Bison bison 42.36 10.78 24.61 3.46 2.01 40.86 0.7 0.38 0.42 1.50
平均值 Mean 45.00 11.28 25.88 3.73 2.10 42.97 0.76 0.65 0.62 2.03

Table 2

The distribution of slTRs and mlTRs in six species of bovinae"

物种
Species
单位点串联重复序列 Single-locus TRs 多位点串联重复序列 Muti-locus TRs
数量 Number 比例 Percent (%) 数量 Number 比例 Percent (%)
大额牛 Bos frontalis 10141 18 46203 82
普通牛 Bos taurus 7471 17 37474 83
瘤牛 Bos indicus 257 1 37152 99
牦牛 Bos mutus 11156 24 34847 76
水牛 Bubalus bubalis 6920 15 38586 85
野牛 Bison bison 6315 16 34166 84
平均值 Mean 7043 15 38071 85

Table 3

The distribution of TE-derieved TRs"

物种
Species
串联重复序列 Total TRs 转座子来源的串联重复序列 TE-derieved TRs
数量
Number
数量
Number
比例
Percent (%)
单位点串联重复序列
slTRs (%)
多位点串联重复序列
mlTRs (%)
大额牛 Bos frontalis 56344 31959 57% 10% 90%
普通牛 Bos taurus 44945 36696 82% 5% 95%
瘤牛 Bos indicus 37409 31381 84% 0% 100%
牦牛 Bos mutus 46003 27442 60% 13% 87%
水牛 Bubalus bubalis 45506 19711 43% 5% 95%
野牛 Bison bison 40481 30525 75% 5% 95%
平均值 Mean 45115 29619 67% 6% 94%

Fig. 1

Relative number and actual number of TRs- related TEs The ordinate represents the transposable, the abscissa represents the relative number (%). The number on the right side of each column: the percentage number represents the relative number and the actual number of corresponding transposons in parentheses"

Fig. 2

Self-alignment dotplot of BovB (A) and L1_BT (B) A:BovB;B:L1_BT。Each short line indicates that the sequence can be matched with a window size of 50 and a threshold of 50"

Fig. 3

Internal TRs sequence alignment of BovB (a) and L1_BT (b)"

[1] DE KONING A P J, GU W J, CASTOE T A, BATZER M A, POLLOCK D D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genetics, 2011, 7(12): e1002384. doi: 10.1371/journal.pgen.1002384.
doi: 10.1371/journal.pgen.1002384
[2] SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F S, PASTERNAK S, LIANG C Z, ZHANG J W, FULTON L, GRAVES T A, et al. The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115. doi: 10.1126/science.1178534.
doi: 10.1126/science.1178534
[3] HESLOP-HARRISON J S, SCHWARZACHER T. Organisation of the plant genome in chromosomes. The Plant Journal, 2011, 66(1): 18-33. doi: 10.1111/j.1365-313X.2011.04544.x.
doi: 10.1111/j.1365-313X.2011.04544.x.
[4] 艾对元. 基因组中重复序列的意义. 生命的化学, 2008, 28(3): 343-345. doi: 10.3969/j.issn.1000-1336.2008.03.031.
doi: 10.3969/j.issn.1000-1336.2008.03.031
AI D Y. The meaning of repeat sequences. Chemistry of Life, 2008, 28(3): 343-345. doi: 10.3969/j.issn.1000-1336.2008.03.031. (in Chinese)
doi: 10.3969/j.issn.1000-1336.2008.03.031
[5] AHMED M, LIANG P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comparative and Functional Genomics, 2012, 2012: 947089. doi: 10.1155/2012/947089.
doi: 10.1155/2012/947089
[6] JURKA J, GENTLES A J. Origin and diversification of minisatellites derived from human Alu sequences. Gene, 2006, 365: 21-26. doi: 10.1016/j.gene.2005.09.029.
doi: 10.1016/j.gene.2005.09.029
[7] WONG L H, CHOO K H A. Evolutionary dynamics of transposable elements at the centromere. Trends in Genetics, 2004, 20(12): 611-616. doi: 10.1016/j.tig.2004.09.011.
doi: 10.1016/j.tig.2004.09.011
[8] MACAS J, KOBLÍŽKOVÁ A, NAVRÁTILOVÁ A, NEUMANN P. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene, 2009, 448(2): 198-206. doi: 10.1016/j.gene.2009.06.014.
doi: 10.1016/j.gene.2009.06.014
[9] SHARMA A, WOLFGRUBER T K, PRESTING G G. Tandem repeats derived from centromeric retrotransposons. BMC Genomics, 2013, 14: 142. doi: 10.1186/1471-2164-14-142.
doi: 10
[10] CHENG Z J, MURATA M. A centromeric tandem repeat family originating from a part of Ty3/Gypsy-retroelement in wheat and its relatives. Genetics, 2003, 164(2): 665-672. doi: 10.1093/genetics/164.2.665.
doi: 10.1093/genetics/164.2.665
[11] MILLER W J, NAGEL A, BACHMANN J, BACHMANN L.Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Molecular Biology and Evolution, 2000, 17(11): 1597-1609. doi: 10.1093/oxfordjournals.molbev.a026259.
doi: 10.1093/oxfordjournals.molbev.a026259
[12] PONTECORVO G, DE FELICE B, CARFAGNA M. A novel repeated sequence DNA originated from a Tc1-like transposon in water green frog Rana esculenta. Gene, 2000, 261(2): 205-210. doi: 10.1016/S0378-1119(00)00539-4.
doi: 10.1016/S0378-1119(00)00539-4
[13] KAPITONOV V V, HOLMQUIST G P, JURKA J. L1 repeat is a basic unit of heterochromatin satellites in cetaceans. Molecular Biology and Evolution, 1998, 15(5): 611-612. doi: 10.1093/oxfordjournals.molbev.a025963.
doi: 10.1093/oxfordjournals.molbev.a025963
[14] GAFFNEY P M, PIERCE J C, MACKINLEY A G, TITCHEN D A, GLENN W K. Pearl, a novel family of putative transposable elements in bivalve mollusks. Journal of Molecular Evolution, 2003, 56(3): 308-316. doi: 10.1007/s00239-002-2402-5.
doi: 10.1007/s00239-002-2402-5
[15] BOVINE G S, ANALYSIS C, ELSIK C G, GIBBS R A, MUZUNY D M, WEINSTOCK G M, AELSON D L, EICHLER E E, ELNITSKI L, GUIGO R, et al. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science, 2009, 324(5926): 522-8.
doi: 10.1126/science.1169588
[16] WANG K, WANG L Z, LENSTRA J A, JIAN J B, YANG Y Z, HU Q J, LAI D Y, QIU Q, MA T, DU Z, ABBOTT R, LIU J Q. The genome sequence of the wisent (Bison bonasus). GigaScience, 2017, 6(4): gix016. doi: 10.1093/gigascience/gix016.
doi: 10.1093/gigascience/gix016
[17] WANG M S, ZENG Y, WANG X, NIE W H, WANG J H, SU W T, OTECKO N O, XIONG Z J, WANG S, QU K X, YAN S Q, YANG M M, WANG W, DONG Y, WU D D, ZHANG Y P. Draft genome of the gayal, Bos frontalis. GigaScience, 2017, 6(11): gix094. doi: 10.1093/gigascience/gix094.
doi: 10.1093/gigascience/gix094
[18] GLANZMANN B, MÖLLER M, LE ROEX N, TROMP G, HOAL E G, VAN HELDEN P D. The complete genome sequence of the African buffalo (Syncerus caffer). BMC Genomics, 2016, 17(1): 1001. doi: 10.1186/s12864-016-3364-0.
doi: 10.1186/s12864-016-3364-0
[19] BENSON G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2): 573-580. doi: 10.1093/nar/27.2.573.
doi: 10.1093/nar/27.2.573
[20] MELTERS D P, BRADNAM K R, YOUNG H A, TELIS N, MAY M R, RUBY J G, SEBRA R, PELUSO P, EID J, RANK D, GARCIA J F, DERISI J L, SMITH T, TOBIAS C, ROSS-IBARRA J, KORF I, CHAN S W L. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 2013, 14(1): R10. doi: 10.1186/gb-2013-14-1-r10.
doi: 10
[21] AMES D, MURPHY N, HELENTJARIS T, SUN N N, CHANDLER V. Comparative analyses of human single- and multilocus tandem repeats. Genetics, 2008, 179(3): 1693-1704. doi: 10.1534/genetics.108.087882.
doi: 10.1534/genetics.108.087882
[22] MEŠTROVIĆ N, MRAVINAC B, PAVLEK M, VOJVODA-ZELJKO T, ŠATOVIĆ E, PLOHL M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Research, 2015, 23(3): 583-596. doi: 10.1007/s10577-015-9483-7.
doi: 10.1007/s10577-015-9483-7
[23] VONDRAK T, ROBLEDILLO L Á, NOVÁK P, KOBLÍŽKOVÁ A, NEUMANN P, MACAS J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. The Plant Journal: for Cell and Molecular Biology, 2020, 101(2): 484-500. doi: 10.1111/tpj.14546.
doi: 10.1111/tpj.14546
[24] LÓPEZ-FLORES I, GARRIDO-RAMOS M A. The repetitive DNA content of eukaryotic genomes. Genome Dynamics, 2012, 7: 1-28. doi: 10.1159/000337118.
doi: 10.1159/000337118
[25] CHENG Z K, DONG F G, LANGDON T, OUYANG S, BUELL C R, GU M H, BLATTNER F R, JIANG J M. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. The Plant Cell, 2002, 14(8): 1691-1704. doi: 10.1105/tpc.003079.
doi: 10.1105/tpc.003079
[26] ZHONG C X, MARSHALL J B, TOPP C, MROCZEK R, KATO A, NAGAKI K, BIRCHLER J A, JIANG J M, DAWE R K. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. The Plant Cell, 2002, 14(11): 2825-2836. doi: 10.1105/tpc.006106.
doi: 10.1105/tpc.006106
[27] LIU Z, YUE W, LI D Y, WANG R R C, KONG X Y, LU K, WANG G X, DONG Y S, JIN W W, ZHANG X Y. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma, 2008, 117(5): 445-456. doi: 10.1007/s00412-008-0161-9.
doi: 10.1007/s00412-008-0161-9
[28] LANGDON T, SEAGO C, JONES R N, OUGHAM H, THOMAS H, FORSTER J W, JENKINS G. De novo evolution of satellite DNA on the rye B chromosome. Genetics, 2000, 154(2): 869-884. doi: 10.1093/genetics/154.2.869.
doi: 10.1093/genetics/154.2.869
[29] GONG Z Y, WU Y F, KOBLÍŽKOVÁ A, TORRES G A, WANG K, IOVENE M, NEUMANN P, ZHANG W L, NOVÁK P, BUELL C R, MACAS J, JIANG J M. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. The Plant Cell, 2012, 24(9): 3559-3574. doi: 10.1105/tpc.112.100511.
doi: 10.1105/tpc.112.100511
[30] HIKOSAKA A, KAWAHARA A. Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: A new mechanism for creating simple sequence repeats. Journal of Molecular Evolution, 2004, 59(6): 738-746. doi: 10.1007/s00239-004-2664-1.
doi: 10.1007/s00239-004-2664-1
[31] PLOHL M, MEŠTROVIĆ N, MRAVINAC B. Satellite DNA evolution. Genome Dynamics, 2012, 7:126-152. doi: 10.1159/000337122.
doi: 10.1159/000337122
[32] MCGURK M P, BARBASH D A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Research, 2018, 28(5): 714-725. doi: 10.1101/gr.231472.117.
doi: 10.1101/gr.231472.117
[33] KAPITONOV V V, JURKA J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica, 1999, 107(1/2/3): 27-37.
doi: 10.1023/A:1004030922447
[34] SMIT A F A, RIGGS A D. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Research, 1995, 23(1): 98-102. doi: 10.1093/nar/23.1.98.
doi: 10.1093/nar/23.1.98
[35] DAMIANI G, FLORIO S, PANELLI S, CAPELLI E, CUCCIA M. The Bov-A2 retroelement played a crucial role in the evolution of ruminants. Rivista Di Biologia, 2008, 101(3): 375-404.
[36] YANG H P, BARBASH D A. Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biology, 2008, 9(2): R39. doi: 10.1186/gb-2008-9-2-r39.
doi: 10
[37] THOMAS J, VADNAGARA K, PRITHAM E J. DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mobile DNA, 2014, 5: 18. doi: 10.1186/1759-8753-5-18.
doi: 10.1186/1759-8753-5-18
[38] LUCHETTI A. terMITEs: miniature inverted-repeat transposable elements (MITEs) in The Termite Genome (Blattodea: Termitoidae). Molecular Genetics and Genomics: MGG, 2015, 290(4): 1499-1509. doi: 10.1007/s00438-015-1010-1.
doi: 10.1007/s00438-015-1010-1
[39] NOMA K. Tnat1 and Tnat 2 from Arabidopsis thaliana: novel transposable elements with tandem repeat sequences. DNA Research, 2000, 7(1): 1-7. doi: 10.1093/dnares/7.1.1.
doi: 10.1093/dnares/7.1.1
[40] SCALVENZI T, POLLET N. Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA. Molecular Phylogenetics and Evolution, 2014, 81: 1-9. doi: 10.1016/j.ympev.2014.08.014.
doi: 10.1016/j.ympev.2014.08.014
[41] DIAS G B, SVARTMAN M, DELPRAT A, RUIZ A, KUHN G C S. Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biology and Evolution, 2014, 6(6): 1302-1313. doi: 10.1093/gbe/evu108.
doi: 10.1093/gbe/evu108
[42] MARTÍNEZ-IZQUIERDO J A, GARCÍA-MARTÍNEZ J, VICIENT C M. What makes Grande1 retrotransposon different? Genetica, 1997, 100(1/2/3): 15-28.
doi: 10.1023/A:1018332218319
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[3] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[4] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[5] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[6] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[7] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[8] LI GuanMo,ZHANG WenJu,QU XiaoLin,QIAO Lei,HUANG YaPing,XU Hu,XU MingGang. Evolution Characteristics and Influencing Factors on Inherent Soil Productivity Across Dryland [J]. Scientia Agricultura Sinica, 2021, 54(19): 4132-4142.
[9] SHAO ChenBing,HUANG ZhiNan,BAI XueYing,WANG YunPeng,DUAN WeiKe. Identification, Systematic Evolution and Expression Analysis of HD-Zip Gene Family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004-1017.
[10] ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801.
[11] YANG YunFei,XIN XiaoPing,LI JianDong. A Discussion on the Diffusion Pathway of Leymus Chinensis in the Natural Grassland of China Based on Differentiation in the Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(13): 2541-2549.
[12] ZHANG WenYing, HAN Xu, ZHU XuDong, XIE ZhenQiang, JIU SongTao, HUANG YuQing, JIA HaiFeng, FANG JingGui, WANG Chen. Identification of the Target Genes of VvmiR159s and Their Regulation in Response to GA in Different Tissues of Grape Berry [J]. Scientia Agricultura Sinica, 2019, 52(16): 2858-2870.
[13] HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118.
[14] LI SongBo, TANG ChaoChen, CHEN Feng, XIE GuangHui. Temporal and Spatial Changes in Yield and Quality with Grain Sorghum Variety Improvement in China [J]. Scientia Agricultura Sinica, 2018, 51(2): 246-256.
[15] WANG XiaoKe, JIANG Dong, SUN ZhenZhu. Study on Phylogeny of 240 Mandarin Accessions with Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2017, 50(9): 1666-1673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!