Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (16): 3119-3129.doi: 10.3864/j.issn.0578-1752.2016.16.006

• PLANT PROTECTION • Previous Articles     Next Articles

Triplex PCR Detection for Corynespora cassiicola,Colletotrichum orbiculare and Pseudomonas syringae pv. lachrymans

GAO Shi-gang1,2, ZENG Rong1,2, XU Li-hui1,2, LUO Jin-yan3, CHEN Lei3, DAI Fu-ming1,2   

  1. 1Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403
    2Key Laboratory of Horticultural Facilities in Shanghai, Shanghai 201403
    3Shanghai City Agricultural Technology Extension and  Service Center, Shanghai 201103
  • Received:2016-01-28 Online:2016-08-16 Published:2016-08-16

Abstract: 【Objective】The objective of this study is to develop a rapid triplex PCR detection method of Corynespora cassiicola,Colletotrichum orbiculare and Pseudomonas syringae pv. lachrymans. 【Method】 Specific primers for the three pathogens were designed based on ITS sequences of C. cassiicola andC. orbiculare and 16S rDNA sequence of P. syringae pv. lachrymans, which were confirmed by amplifying specific fragments. Three pairs of primers specific to C. cassiicola, C. orbiculare or P. syringae pv. lachrymans were suitable for triplex PCR and selected for triplex PCR. Primer concentration, annealing temperature, extension time and cycle number were optimized to develop the triplex PCR detection system. 【Result】Five, seven and six pairs of primers were designed specific to C. cassiicola, C. orbiculare and P. syringae pv. lachrymans, respectively. CC4F/CC4R and CC5F/CC5R primers could specifically amplify ITS sequence of C. cassiicola; CL1F/CL1R, CL2F/CL2R, CL3F/CL3R, CL3F/CL4R, CL3F/CL5R, CL3F/CL6R and CL3F/CL7R could specifically amplify ITS sequence of C. orbiculare; PS3F/PS4R and PS4F/PS4R primers could specifically amplify 16S rDNA sequence of P. syringae pv. lachrymans. Fragments in lengths of 370, 275 and 698 bp were amplified by CC5F/CC5R, CL3F/5R and PS3F/4R, respectively, which were separated fully by 3% agarose gel electrophoresis, and the three pairs of primers were used for triplex PCR. Three target fragments were amplified effectively with 0.16 μmol·L-1 of CC5F/CC5R, 0.4 μmol·L-1 of CL3F/5R and 0.16 μmol·L-1 of PS3F/4R in 25 μL of triplex PCR system. Part target fragments were not amplified effectively at >65 of annealing temperature. Finally, the triplex PCR system suitable for the detection of C. cassiicola, C. orbiculare and P. syringae pv. lachrymans were developed and confirmed. This PCR system contained 12.5 μL of 2×HiffTM PCR Master Mix (With Dye), 0.16 μmol·L-1 of CC5F/CC5R, 0.4 μmol·L-1 of CL3F/CL5R and 0.16 μmol·L-1 of PS3F/PS4R. The PCR program was as follows: an initial denaturation at 95 for 3 min followed by 35 cycles of denaturation (95 for 30 s), annealing (65 for 30 s) and extension (72 for 2 min), and a final extension at 72 for 10 min. 【Conclusion】The detection method could rapidly detect C. cassiicola,C. orbiculare and P. syringae pv. lachrymans from leaves infected by the three pathogens, the sensitivity of which was 0.4 pg·μL-1.

Key words: Corynespora cassiicola;Colletotrichum orbiculare; Pseudomonas syringae pv. lachrymans, molecular detection, triplex PCR

[1]    曾蓉, 陆金萍, 戴富明. 上海地区黄瓜靶斑病病原鉴定及ITS的分析. 上海交通大学学报 (农业科学版), 2011, 29(4): 13-16.
Zeng R, Lu J P, Dai F M. Pathogen identification of cucumber target spot diseae in Shanghai and its sequence analysis. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(4): 13-16. (in Chinese)
[2]    Shimomoto Y, Sato T, Hojo H, Morita Y, Takeuchi S, Mizumoto H, Kiba A, Hikichi Y. Pathogenic and genetic variation among isolates of Corynespora cassiicola in Japan. Plant Pathology, 2011, 60(2): 253-260.
[3]    IRIEDA H, TAKANO Y. Identification and characterization of virulence-related effectors in the cucumber anthracnose fungus Colletotrichum orbiculare. Physiological and Molecular Plant Pathology, 2016, 95: 87-92.
[4]    FUKADA F, KUBO Y. Colletotrichum orbiculare regulates cell cycle G1/S progression via a two-component GAP and a GTPase to establish plant infection. The Plant Cell, 2015, 27(9): 2530-2544.
[5]    Chojak J, Ku?niak E, ?wiercz U, Sekulska- Nalewajko J, Goc?awski J. Interaction between salt stress and angular leaf spot (Pseudomonas syringae pv. lachrymans) in cucumber. Vegetable Crops Research Bulletin, 2012, 77: 5-16.
[6]    陈璐, 石延霞, 谢学文, 柴阿丽, 李宝聚. 黄瓜棒孢叶斑病菌PCR检测方法的建立. 园艺学报, 2014, 41(3): 585-592.
Chen L, Shi Y X, Xie X W, Chai A L, Li B J. PCR assay for detection of Corynespora cassiicola, the causal agent of Corynespora leaf spot of cucumber. Acta Horticulturae Sinica, 2014, 41(3): 585-592. (in Chinese)
[7]    Ma Z H, Michailides T J. Approaches for eliminating PCR inhibitors and designing PCR primers for the detection of phytopathogenic fungi. Crop Protection, 2007, 26(2): 145-161.
[8]    Lievens B, Thomma B P. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology, 2005, 95(12): 1374-1380.
[9]    Alvarez A M. Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annual Review of Phytopathology, 2004, 42: 339-366.
[10]   刘志恒, 郑川, 黄欣阳, 唐爽爽, 李健冰, 焦俊. 茄子绒菌斑病病原菌鉴定及生物学特性研究. 植物保护, 2014, 40(3): 58-64.
LIU Z H, ZHENG C, HUANG X Y, TANG S S, LI J B, JIAO J. Pathogen identification and biological characteristics of eggplant leaf mold. Plant Protection, 2014, 40(3): 58-64. (in Chinese)
[11]   王伟青, 岳瑾, 董杰. 黄瓜棒孢叶斑病种子带菌PCR分子检测. 中国植保导刊, 2013, 33(8): 13-17.
Wang W Q, Yue J, Dong J. Molecular detection of Corynespora cassiicola in cucumber seed by PCR. China Plant Protection, 2013, 33(8): 13-17. (in Chinese)
[12]   高苇, 李宝聚, 王万立, 郝永娟, 石延霞. 土壤中黄瓜棒孢叶斑病病原菌实时荧光定量PCR检测技术研究. 华北农学报, 2014, 29(2): 71-74.
Gao W, Li B J, Wang W L, Hao Y J, Shi Y X. Detection of Corynespora cassiicola in soil with real-time quantitative PCR. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 71-74. (in Chinese)
[13]   Kuan C P, Wu M T, Huang H C, Chang H. Rapid detection of Colletotrichum lagenarium, causal agent of anthracnose of cucurbitaceous crops, by PCR and real-time PCR. Journal of Phytopathology, 2011, 159(4): 276-282.
[14]   Yang H C, Haudenshield J, Hartman G. Multiplex real-time PCR detection and differentiation of Colletotrichum species infecting soybean. Plant Disease, 2015, 99(11): 1559-1568.
[15]   王哲, 陈青, 田茜, 李志红, 朱水芳, 赵文军. 应用PCR方法快速检测黄瓜细菌性角斑病菌. 植物检疫, 2011, 25(6): 29-32.
Wang Z, Chen Q, Tian Q, Li Z H, Zhu S F, Zhao W J. Using PCR for rapid detection ofPseudomonas syringae pv. lachrymans. Plant Quarantine, 2011, 25(6): 29-32. (in Chinese)
[16]   王平, 樊金娟, 刘长远, 赵奎华, 梁春浩. 黄瓜细菌性角斑病的分子检测. 中国农学通报, 2012, 28(25): 150-153.
Wang P, Fan J J, Liu C Y, Zhao K H, Liang C H. The detection of Pseudomonas syringae pv. based on PCR. Chinese Agricultural Science Bulletin, 2012, 28(25): 150-153. (in Chinese)
[17]   王楠, 王伟. 三重PCR检测黄瓜炭疽病菌、菌核病菌和细菌性萎蔫病菌. 植物病理学报, 2014, 44(2): 129-138.
Wang N, Wang W. Triplex PCR detection of Colletotrichum orbiculare, Sclerotinia sclerotiorum and Erwinia tracheiphila in infected cucumber tissues. Acta Phytopathologica Sinica, 2014, 44(2): 129-138. (in Chinese)
[18]   Harju S, Fedosyuk H, Peterson K R. Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnology, 2004, 4: 8.
[19]   Gao S G, Zhou F H, Liu T, Li Y Y, Chen J. A MAP kinase gene, Clk1, is required for conidiation and pathogenicity in the phytopathogenic fungus Curvularia lunata. Journal of Basic Microbiology, 2013, 53: 214-223.
[20]   Suo Y J, Huang Y Y, Liu Y H, Shi C L, Shi X M. The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G. PLoS ONE, 2012, 7(10): e48467.
[21]   Wang H, Qi M, Cutler A J. A simple method of preparing plant samples for PCR. Nucleic Acids Research, 1993, 21(17): 4153-4154.
[22]   White T J, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis M A, Gelfand D H, Sninsky J J, White T J. PCR Protocols: A Guide to Methods and Applications. London, USA: Academic Press, 1990: 315-322.
[23]   Lane D J. 16S/23S rRNA sequencing//Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics. NY, USA: John Wiley & Sons New York, 1991: 115-175.
[24]   赵红庆, 苑锡铜, 黄留玉. 多重PCR技术在病原检测中的应用. 生物技术通讯, 2007, 18(5): 863-865.
Zhao H Q, Yuan X T, Huang L Y. Application of multiplex PCR in detection of pathogens. Letters in Biotechnology, 2007, 18(5): 863-865. (in Chinese)
[25]   高永洋, 王楠, 高观朋, 王伟. 瓜黑星病菌、枯萎病菌和蔓枯病菌的三重PCR检测. 植物病理学报, 2010, 40(4): 343-350.
Gao Y Y, Wang N, Gao G P, Wang W. Triplex PCR detection of Cladosporium cucumerinum, Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues. Acta Phytopathologica Sinica, 2010, 40(4): 343-350. (in Chinese)
[26]   Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: a practical approach. Journal of Clinical Laboratory Analysis, 2002, 16(1): 47-51.
[27]   王楠, 王剑, 尹丹韩, 高观朋, 王伟. 三重PCR检测草莓灰霉病菌、炭疽病菌和黄萎病菌. 中国农业科学, 2010, 43(21): 4392-4400.
Wang N, Wang J, Yin D H, Gao G P, Wang W. Triplex PCR detection of Botrytis cinerea, Colletotrichum gloeosporioides and Verticillium dahliae in infected strawberry plant tissues. Scientia Agricultura Sinica, 2010, 43(21): 4392-4400. (in Chinese)
[28]   Edwards M C, Gibbs R A. Multiplex PCR: advantages development, and application. PCR Methods and Applications, 1994, 3(4): 65-75.
[1] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
[2] LIU RuiChi,CHENG YouPu,CHAI ALi,SHI YanXia,XIE XueWen, PATIGULI,LI BaoJu. Establishment and Application of a Triplex PCR Detection System for Vegetable Soil-Borne Pathogens [J]. Scientia Agricultura Sinica, 2019, 52(12): 2069-2078.
[3] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[4] MU Min, SHU Na, WANG Shuai, GUO Li-xue, FAN Wei-li, YIN Zu-jun, WANG Jun-juan, WANG De-long, YE Wu-wei. The Function Expression of Salt-Tolerant Yeast Gene Halotolerance ( HAL1 ) in Cotton [J]. Scientia Agricultura Sinica, 2016, 49(14): 2651-2661.
[5] WU Xian-xin, LI Tian-ya, CHEN Si, WANG Guan-qin, CAO Yuan-yin, MA Shi-liang, LI Ming-ju. Stem Rust Resistance Evaluation and Ug99-Resistance Gene Detection of 139 Wheat Cultivars [J]. Scientia Agricultura Sinica, 2014, 47(23): 4618-4626.
[6] WANG Xi, LIU Tai-Guo, XIANG Wen-Sheng, CHEN Wan-Quan. Development of a SSR Molecular Marker for Puccinia graminis f. sp. tritici [J]. Scientia Agricultura Sinica, 2011, 44(22): 4593-4599.
[7] LIU Yong-qing,CAO Meng-ji,WANG Xue-feng,LI Zhong-an,TANG Ke-zhi,ZHOU Chang-yong
. Rapid Molecular Detection Technologies of Citrus tristeza virus in Plant Tissues and Single Aphid
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1397-1403 .
[8] WANG Nan,WANG Jian,YIN Dan-han,GAO Guan-peng,WANG Wei . Triplex PCR Detection of Botrytis cinerea, Colletotrichum gloeosporioides and Verticillium dahliae in Infected Strawberry Plant Tissues#br# [J]. Scientia Agricultura Sinica, 2010, 43(21): 4392-4400 .
[9]

.

Rapid Detection of Phytophthora sojae Using SSR Marker and Nested PCR

[J]. Scientia Agricultura Sinica, 2009, 42(5): 1624-1630 .
[10] FENG Jie; ZHENG Xiao-bo; CHEN Wan-quan; KANG Zhen-sheng; WANG Xiao-ming; WANG Yuan-chao; HU Bai-shi; ZHANG Guo-zhen; HAN Li-juan. Rapid Detection Technologies for Potential Crop Invasive Diseases [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3143-3150.
[11] ,,. Molecular detection of Colletetrichum orbiculare [J]. Scientia Agricultura Sinica, 2006, 39(10): 2028-2035 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!