Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (8): 1499-1509.doi: 10.3864/j.issn.0578-1752.2016.08.007

• PLANT PROTECTION • Previous Articles     Next Articles

Duplex-PCR Detection for Heterodera avenae and Heterodera filipjevi Based on mtDNA-COI Sequences

NIU Wen-wen, WANG Xuan, LI Hong-mei, JU Yu-liang, WAN Wen-wen   

  1. College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095
  • Received:2015-12-24 Online:2016-04-16 Published:2016-04-16

Abstract: 【Objective】 The specific primers for the duplex-PCR reaction of Heterodera avenae and H. filipjevi were designed and a synchronous detection system was established for these two species. The work will provide technical supports for rapid and accurate diagnosis of cereal cyst nematodes (CCN) in wheat field of China and benefit to the integrate management strategies.【Method】The forward primers HaF8 and HfF9 respectively specific to H. avenae and H. filipjevi together with the common reverse primer HafR8 were designed according to the comparisons of mtDNA-COI sequences from 24 populations of 10 plant parasitic nematode species. The concentrations of primers and the annealing temperatures for duplex-PCR reaction were optimized and a high efficient detection system for these two CCN species was developed. The established system was applied to identify the CCN species of samples collected from wheat fields in Huanghuai region of China. 【Result】 The specific primers HaF8/HafR8 and HfF9/HafR8 obtained in this study could rapidly detect H. avenae and H. filipjevi in one PCR reaction with high specificity. The PCR product for H. avenae amplified with primers HaF8/HafR8 was 200 bp, for H. filipjevi with primers HfF9/HafR8 was 320 bp. The band sizes were easily distinguished. The optimization showed that the duplex-PCR detection system had a high specificity and amplification efficiency with the annealing temperature of primers HaF8/HfF9/HafR8 at 58. In addition, the detection system could identify H. avenae and H. filipjevi simultaneously from all detected samples with a high efficiency, when the concentration of HaF8﹕HfF9﹕HafR8 was 0.24﹕0.16﹕0.4 μmol·L-1. The sensitivities of the duplex-PCR system detection for single cyst of H. avenae and H. filipjevi were both 1/2 000 000, but for single second stage juvenile were 1/640 and 1/1 280, respectively. The duplex-PCR system was used to identify the species of 14 CCN samples collected from wheat fields in Huanghuai region of China. The results showed that the 200 bp band was amplified from 8 samples, indicating the species is H. avenae. The 320 bp band was amplified from 4 samples, indicating the species is H. filipjevi. However, both the band 200 and 320 bp were only amplified from 2 samples assuming a mixture of H. avenae and H. filipjevi occurred. The results demonstrated that the duplex-PCR detection system could be successfully applied in rapid diagnosis of the complex infection situation of CCN in fields. 【Conclusion】 The established duplex-PCR system with the specific primers designed on basis of mtDNA-COI sequences is a reliable and simple technique for simultaneously rapid detecting H. avenae and H. filipjevi in field samples on wheat.

Key words: Heterodera avenae, Heterodera filipjevi, duplex-PCR, COI, specificity

[1]    Subbotin S A, Sturhan D, Rumpenhorst H J, Moens M. Molecular and morphological characterization of the Heterodera avenae species complex (Tylenchida: Heteroderidae). Nematology, 2003, 5(4): 515-538.
[2]    Nicol J M, Rivoal R, Taylor S, Zaharieva M. Global importance of cyst (Heterodera spp.) and lesion nematodes (Pratylenchus spp.) on cereals: yield loss, population dynamics, use of host resistance and integration of molecular tools. Nematology Monographs and Perspectives, 2004, 2: 1-19.
[3]    Rivoal R, Nicol J M. Past research on the cereal cyst nematode complex and future needs//Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009: 3-10.
[4]    陈品三, 王明祖, 彭德良. 我国小麦禾谷孢囊线虫 (Heterodera avenae Wollenweber) 的发现与鉴定初报. 中国农业科学, 1991, 24(5): 89-91.
Chen P S, Wang M Z, Peng D L. Preliminary report for identification of Heterodera avenae Wollenweber on wheat in China. Scientia Agricultura Sinica, 1991, 24(5): 89-91. (in Chinese)
[5]    李惠霞, 柳永娥, 魏庄, 李敏权. 新疆和西藏发现禾谷孢囊线虫. 中国线虫学研究, 2012, 4: 164-165.
Li H X, Liu Y E, Wei Z, Li M Q. The detection of Heterodera avenae from the cereal field in autonomous regions of Tibet and Xinjiang. Nematology Research in China, 2012, 4: 164-165. (in Chinese)
[6]    王振跃, 李洪连, 袁虹霞. 小麦孢囊线虫病的发生危害与防治对策. 河南农业科学, 2005(12): 54-55. 
Wang Z Y, Li H L, Yuan H X. Occurrence and damage of wheat cyst nematode disease and its control countermeasures. Journal of Henan Agricultural Sciences, 2005(12): 54-55. (in Chinese)
[7]    侯生英, 王爱玲, 张贵, 黄丽丽. 小麦禾谷孢囊线虫病危害损失研究. 农学学报, 2012, 2(8): 33-36. 
Hou S Y, Wang A L, Zhang G, Huang L L. Effect of cereal cyst nematode on agronomic characteristics and yield losses of spring wheat. Journal of Agriculture, 2012, 2(8): 33-36. (in Chinese)
[8]    Peng D L, Ye W X, Peng H, Gu X C. First report of the cyst nematode (Heterodera filipjevi) on wheat in Henan Province, China. Plant Disease, 2010, 94(10): 1262.
[9]    McDonald A H, Nicol J M. Nematode parasites of cereals//Luc M, Sikora R A, Bridge J. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Wallingford, UK: CABI Publishing, 2005: 131-191.
[10]   邢小萍, 袁虹霞, 孙君伟, 张洁, 孙炳剑, 李洪连. 河南省小麦主推品种对2种禾谷孢囊线虫的抗性及其评价方法. 作物学报, 2014, 40(5): 805-815.
Xing X P, Yuan H X, Sun J W, Zhang J, Sun B J, Li H L. Resistance to two species of cereal cyst nematode and evaluation methods in major wheat cultivars from Henan Province, China. Acta Agronomica Sinica, 2014, 40(5): 805-815. (in Chinese)
[11]   Abidou H, Valette S, Gauthier J P, Rivoal R, El-Ahmed A, Yahyaoui A. Molecular polymorphism and morphometrics of species of the Heterodera avenae group in Syria and Turkey. Journal of Nematology, 2005, 37(2): 146-154.
[12]   Yan G P, Smiley R W. Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction-restriction fragment length polymorphism and cyst morphology. Phytopathology, 2010, 100(3): 216-224.
[13]   Subbotin S A, Vierstraete A, De Ley P, Rowe J, Waeyenberge L, Moens M, Vanfleteren J R. Phylogenetic relationships within the cyst-forming nematodes (Nematoda: Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetics and Evolution, 2001, 21(1): 1-16.
[14]   Rivoal R, Valette S, Bekal S, Gauthier J P, Yahyaoui A. Genetic and phenotypic diversity in the graminaceous cyst nematode complex, inferred from PCR-RFLP of ribosomal DNA and morphometric analysis. European Journal of Plant Pathology, 2003, 109: 227-241.
[15]   亓晓莉, 彭德良, 彭焕, 龙海波, 黄文坤, 贺文婷. 基于SCAR标记的小麦禾谷孢囊线虫快速分子检测技术. 中国农业科学, 2012, 45(21): 4388-4395.
Qi X L, Peng D L, Peng H, Long H B, Huang W K, He W T. Rapid molecular diagnosis based on scar marker system for cereal cyst nematode. Scientia Agricultura Sinica, 2012, 45(21): 4388-4395. (in Chinese)
[16]   Peng H, Qi X L, Peng D L, Long H B, He X F, Huang W K, He W T. Sensitive and direct detection of Heterodera filipjevi in soil and wheat roots by species-specific SCAR-PCR assays. Plant Disease, 2013, 97(10): 1288-1294.
[17]   Yan G P, Smiley R W. Species-specific PCR assays for differentiating Heterodera filipjevi and H. avenae. Plant Disease, 2013, 97(12): 1611-1619.
[18]   Toumi F, Waeyenberge L, Viaene N, Dababat A, Nicol J M, Ogbonnaya F, Moens M. Development of two species-specific primer sets to detect the cereal cyst nematodes Heterodera avenae and Heterodera filipjevi. European Journal of Plant Pathology, 2013, 136(3): 613-624.
[19]   彭德良, 徐小琴, 彭焕, 亓晓莉, 黄文坤, 贺文婷, 姜道宏. 一种禾谷孢囊线虫LAMP快速检测方法及应用. 中国发明专利, ZL201310020383.4[P]. 2014-04-09.
Peng D L, Xu X Q, Peng H, Qi X L, Huang W K, He W T, Jiang D H. A rapid detection of Heterodera avenae by LAMP and its application. China Patent, ZL201310020383.4[P]. 2014-04-09. (in Chinese)
[20]   彭德良, 徐小琴, 彭焕, 黄文坤, 亓晓莉, 姜道宏. 一种菲利普孢囊线虫LAMP快速检测方法及应用. 中国发明专利, ZL201310053055.4[P]. 2014-02-26.
Peng D L, Xu X Q, Peng H, Huang W K, Qi X L, Jiang D H. A rapid detection of Heterodera filipjevi by LAMP and its application. China Patent, ZL201310053055.4[P]. 2014-02-26. (in Chinese)
[21]   Subbotin S A, Peng D L, Moens M. A rapid method for the identification of the soybean cyst nematode Heterodera glycines using duplex PCR. Nematology, 2001, 3(4): 365-371.
[22]   Amiri S, Subbotin S A, Moens M. Identification of the beet cyst nematode Heterodera schachtii by PCR. European Journal of Plant Pathology, 2002, 108(6): 497-506.
[23]   Jiang L Q, Zheng J W, Waeyenberge L, Subbotin S A, Moens M. Duplex PCR based identification of Bursaphelenchus xylophilus (Steiner & Buhrer, 1934) Nickle, 1970. Russian Journal of Nematology, 2005, 13(2): 115-121.
[24] Bae C H, Robbins R T, Szalanski A L. Molecular identification of some Hoplolaimus species from the USA based on duplex PCR, multiplex PCR and PCR-RFLP analysis. Nematology, 2009, 11(3): 471-480.
[25]   Waeyenberge L, Viaene N, Moens M. Species-specific duplex PCR for the detection of Pratylenchus penetrans. Nematology, 2009, 11(6): 847-857.
[26]   宋志强, 王暄, 林宇, 迟元凯, 鞠玉亮, 李红梅. 土壤中南方根结线虫的实时荧光PCR检测和定量. 植物保护学报, 2013, 40(3): 255-260.  
Song Z Q, Wang X, Lin Y, Chi Y K, Ju Y L, Li H M. Detection   and quantification of Meloidogyne incognita in soil sample using real-time PCR. Acta Phytophylacica Sinica, 2013, 40(3): 255-260. (in Chinese)
[27]   王婷婷, 王暄, 王金成, 李鸿, 李红梅. 食线虫真菌蠕虫埃斯特菌对植物寄生线虫的侵染特性. 植物保护学报, 2014, 41(5): 540-546.
Wang T T, Wang X, Wang J C, Li H, Li H M. Infection characteristics of nematophagous fungus Esteya vermicola to plant parasitic nematodes. Acta Phytophylacica Sinica, 2014, 41(5): 540-546. (in Chinese)
[28]   王暄, 梁中伟, 裴世安, 乐秀虎, 李红梅, 彭德良. 江苏省小麦禾谷孢囊线虫群体核糖体DNA-ITS区序列分析. 南京农业大学学报, 2010, 33(6): 55-62.
Wang X, Liang Z W, Pei S A, Le X H, Li H M, Peng D L. Sequences analysis of rDNA-ITS region of cereal cyst nematodes on wheat from Jiangsu Province. Journal of Nanjing Agricultural University, 2010, 33(6): 55-62. (in Chinese)   
[29]   Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T. Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series, 2005, 300: 91-103.
[30]   李洪连, 张煜, 袁虹霞, 孙炳剑, 付博. 用于同时检测燕麦孢囊线虫和菲利普孢囊线虫的特异引物序列、探针序列及其方法. 中国发明专利, ZL201110408449.8[P]. 2013-10-09.
Li H L, Zhang Y, Yuan H X, Sun B J, Fu B. Specific primer sequence and probe sequence for simultaneous detection on Heterodera avenae and Heterodera filipjevi, and detection method with specific primer sequence and probe sequence. China Patent, ZL201110408449.8[P]. 2013-10-09. (in Chinese)
[31]   Zheng J W, Subbotin S A, Waeyenberge L, Moens M. Molecular characterisation of Chinese Heterodera glycines and H. avenae populations based on RFLPs and sequences of rDNA-ITS regions. Russian Journal of Nematology, 2000, 8(2): 109-113.
[32]   Hajibabaei M, Singer G A C, Hebert P D N, Hickey D A. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 2007, 23(4): 167-172.
[33]   Bhadury P, Austen M C, Bilton D T, Lambshead P J D, Rogers A D, Smerdon G R. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Marine Ecology Progress Series,2006, 320: 1-9.
[34]   Derycke S, Vanaverbeke J, Rigaux A, Backeljau T, Moens T. Exploring the use of cytochrome oxidase c subunit I (COI) for DNA barcoding of free-living marine nematodes. PLoS One, 2010, 5(10): e13716.
[35]   Kiontke K C, Felix M A, Ailion M, Rockman M V, Braendle C, Pénigault J B, Fitch D H A. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evolutionary Biology, 2011, 11: 339.
[1] DAI YuLi,GAN Lin,TENG ZhenYong,YANG JingMin,QI YueYue,SHI NiuNiu,CHEN FuRu,YANG XiuJuan. Establishment and Application of a Multiple PCR Method to Detect Mating Types of Exserohilum turcicum and Bipolaris maydis [J]. Scientia Agricultura Sinica, 2020, 53(3): 527-538.
[2] LI Bo,DU JianGuo,LIU XueQi. Spatial-Temporal Characteristics and Economic Relevance of Agricultural Carbon Emissions in Hubei Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4309-4319.
[3] ZHANG Rong,WANG YuSheng,YANG LiMei,WAN FangHao,ZHANG GuiFen. One-Step Duplex Rapid Identification Technique of Frankliniella occidentalis Greenhouse and Lupin Races Based on Species-Specific COI Marker [J]. Scientia Agricultura Sinica, 2019, 52(16): 2809-2823.
[4] LI GuoJi, YAN ChaoQun, MA YuQiao, XIE Shun, GU Xin, CAO Ying, HUANG ShiXin, HUANG XianHui. Antibacterial Activity in Vitro and Protection of Tildipirosin Injection Against Artificially Infected Haemophilus Paracoides in Piglets [J]. Scientia Agricultura Sinica, 2019, 52(16): 2899-2911.
[5] KONG YouBin, LI XiHuan, ZHANG CaiYing. Construction and Activity Analysis of the Promoter of Purple Acid Phosphatase Gene GmPAP4 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(3): 582-590.
[6] LI Xin, GU XiaoChuan, LONG HaiBo, PENG Huan, HUANG WenKun, PENG DeLiang. Identification and Expression Analysis of a New Pectate Lyase Gene Ha-pel-1 from Heterodera avenae [J]. Scientia Agricultura Sinica, 2017, 50(19): 3723-3732.
[7] WANG Fang, FENG Yu, ZHANG Ge, JIANG Hui, ZHU Liang-quan, DING Jia-bo. Development of Indirect ELISA for Antibody of Brucella abortus [J]. Scientia Agricultura Sinica, 2016, 49(9): 1818-1825.
[8] SHEN Guang-mao, WANG Xiao-na, HUANG Yong, DOU Wei, WANG Jin-jun. Tissue Specific Expression of Genes Encoding Detoxification Enzymes in the Larvae of Bactrocera dorsalis Under β-Cypermethrin Stress [J]. Scientia Agricultura Sinica, 2015, 48(19): 3857-3865.
[9] WANG Wen-jing, YANG Xiao-chuan, DING Yong-qiang, YIN Guo-ying, MA Hao-ran, ZHANG Jie, SHI Xiao-yu, ZHANG Ding-yu, LI Jia-na, ZHANG Hong-bo. Functional Analysis of COI1 Genes in Oilseed Rape (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2015, 48(10): 1882-1891.
[10] HE Xu-Feng, PENG Huan, DING Zhong, HE Wen-Ting, HUANG Wen-Kun, PENG De-Liang. Loop-Mediated Isothermal Amplification Assay for Rapid Diagnosis of Meloidogyne enterolobii Directly from Infected Plants [J]. Scientia Agricultura Sinica, 2013, 46(3): 534-544.
[11] ZHANG Chun-Zhi, LIU Lei, SUN Yu-Yan, ZHOU Long-Xi, YANG Yu-Hong, XIE Bing-Yan, LI Jun-Ming. Identification of QTLs Conferring Resistance to Late Blight in Solanum lycopersicoides LA2951 Introgression Line Population [J]. Scientia Agricultura Sinica, 2012, 45(6): 1093-1105.
[12] ZHENG Yong-Qiang, LIU Yan-Mei, HE Shao-Lan, YI Shi-Lai, DENG Lie, ZHOU Zhi-Qin, JIAN Shui-Xian, LI Song-Wei. Analysis of the Specificity of Rootstock and Scion Combinations of ‘Hamlin’ Sweet Orange Related to Fruit Oleocellosis by FTIR [J]. Scientia Agricultura Sinica, 2012, 45(19): 4032-4039.
[13] YIN Li-juan,ZHANG Chun-ying,YANG Bing
. Characteristics of Nitrogen Absorbed by Ericoid Mycorrhizal Fungi and Impact on Growth of Rhododendron fortunei
[J]. Scientia Agricultura Sinica, 2010, 43(4): 868-872 .
[14] XIA Li-jie,SU You-hong,ZHANG Qing-hua,XIA Xue-qin,LIU Hong-chun,LI Jiang-wei
. Isolation and Identification of Heavy Chain Antibodies Derived from Immunized Xinjiang Camelus Bactrianus Antisera
[J]. Scientia Agricultura Sinica, 2010, 43(17): 3660-3666 .
[15] ZHANG Jun,ZHAO Tuan-jie,GAI Jun-yi. Analysis of Genetic Structure Differentiation of Released Soybean Cultivar Population and Specificity of Subpopulations in China
[J]. Scientia Agricultura Sinica, 2009, 42(6): 1901-1910 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!