Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (11): 2127-2142.doi: 10.3864/j.issn.0578-1752.2015.11.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Growth Substances on the Fiber Growth and Development of Color Cotton Ovule Culture in vitro

LIU Song-jiang, GONG Wen-fang, SUN Jun-ling, PANG Bao-yin, DU Xiong-ming   

  1. Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2014-07-25 Online:2015-06-01 Published:2015-06-01

Abstract: 【Objective】 In order to establish and optimize theovule culture system of brown cotton and green cotton, the effects of growth substances (osmotic regulators, plant growth regulators and flavonoids biosynthesis precursors) on the fiber growth and development were studied.【Method】Brown cotton variety Z1-61, green cotton variety CC28 and the white cotton variety RT-White (control sample) were used as plant materials. The conventional ways of cultivation and management were adopted. Flowers were tagged at 0 day post anthesis (DPA), and then the ovules of 3 DPA were used for ovule culture in vitro. Besides the addition of 10.0 μmol·L-1 IAA and 5.0 μmol·L-1 GA3, different concentrations of osmotic regulators (mannitol, NaCl, KCl and sucrose), plant growth regulators (MeJA and BR) and flavonoids biosynthesis precursors (phenylalanine and ferelic acid ) were added to the basic BT medium, respectively. Except investigating the interaction effect between brassinolide and methyl jasmonate, the other experiments were chosen variety and treatment for dual factors test. After being cultured in vitro for 30 days, the fiber color, fiber length, ovule fresh weight, ovule dry weight and fiber dry weight of Z1-61, RT-White, and CC28 were determined. The mean value and standard error were calculated and multiple comparisons were carried out using least significant difference(LSD) or shortest significant ranges(SSR).【Result】Color cotton pigmentation was observed until 15 d after ovule culture in vitro. The best treatment for color cotton ovule growth and fiber development was 5 g·L-1 sucrose, under which the fiber length, ovule fresh weight, fiber dry weight and ovule dry weight of Z1-61 was significantly increased by 28.35%, 20.69%, 103.70% and 75.84% (P<0.05), while that of CC28 was significantly increased by 8.10%, 16.07%, 63.14% and 82.76% (P<0.05), respectively, compared with the controls. In 0.05 μmol·L-1MeJA treatment, the fiber length of Z1-61 was significantly increased by 22.90% (P<0.05), while that of CC28 was increased by 4.39%. In 0.5 μmol·L-1 BR treatment, the fiber length of Z1-61 and CC28 was significantly increased by 22.46% and 11.56% (P<0.05), respectively. In 25 μmol·L-1 ferelic acid treatment, the fiber length of Z1-61 and CC28 was significantly increased by 8.72% and 8.81%(P<0.05), respectively. Furthermore, 30 g·L-1 mannitol, 0.1 mol·L-1 NaCl, 0.20 mol·L-1 KCl, 10 g·L-1 sucrose, 40 μmol·L-1 methyl jasmonate or 0.10 mmol·L-1 phenylalanine were conducive to the pigment accumulation of brown cotton fiber. Among them the best treatment was 40 μmol·L-1 MeJA. However, the growth substances used in this experiment did not cause any significant change in the pigment appearance of green cotton.【Conclusion】Sucrose provided the sugar source and osmotic environment for color cotton ovule growth and fiber development, and the appropriate concentrations of MeJA, BR or ferulic acid benefited the fiber elongation. There was a cross-effect between BR and MeJA. BR was mainly involved in fiber elongation, while MeJA may be involved in the pigment accumulation of brown cotton. Furthermore, certain concentrations of mannitol, NaCl, KCl, sucrose, MeJA or phenylalanine were advantageous to the brown cotton fiber pigment synthesis. However, neither osmotic regulators, plant growth regulators nor flavonoids biosynthesis precursors caused any significant change to the pigment accumulation of green cotton.

Key words: color cotton, fiber growth, pigment synthesis, osmotic regulators, plant growth regulators, precursors

[1]    于伯龄. 绿色天然彩色棉金属盐固色试验. 针织工业, 2002, 1: 35-37.
Yu B L.Natural green color cotton color fixation experiment by metal salt. Txtile Industry, 2002, 1: 35-37. (in Chinese)
[2]    赵向前, 王学德. 天然彩色棉纤维色素成分的研究. 作物学报, 2005, 31(4): 456-462.
Zhao X Q, Wang X D. Composition analysis of pigment in colored cotton fiber. Acta Agronomica Sinca, 2005, 31(4): 456-462. (in Chinese)
[3]    詹少华, 林毅, 蔡永萍, 李正鹏. 天然棕色棉纤维色素光谱学特性及其化学结构初步推断. 植物学通报, 2007, 24(1): 99-104.
Zhan S H, Lin Y, Cai Y P, Li Z P. Preliminary deductions of the chemical structure of the pigment brown in cotton fiber. Chinese Bulletin of Botany, 2007, 24(1): 99-104. (in Chinese)
[4]    Sun W G, Xu Y. Study on the composition of the pigments in the nature colored cotton. Journal of Xi’an Polytechnic University, 2009, 23(2): 119-123.
[5]    Hua S J, Wang X D, Yuan S N, Shao M G, Zhao X Q, Zhu S J, Jiang L X. Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Science, 2007, 47(4): 1540-1546.
[6]    张美玲. 彩色棉纤维分化发育规律与色素成分研究[D]. 泰安: 山东农业大学, 2013.
Zhang M L. Exploration of fiber differentiation and development and pigment component in colored cotton[D]. Taian: Shandong Agricultural University, 2013. (in Chinese)
[7]    胡超, 杨园园, 郭宁, 蔡永萍, 林毅, 高俊山, 姜家生. 棕色棉与白色棉缩合单宁单体儿茶素动态变化的比较. 植物生理学报, 2011, 47(7): 685-690 
Hu C, Yang Y Y, Guo N, Cai Y P, Lin Y, Gao J S, Jiang J S. Comparison of dynamic changes in condensed tannin monomer catechins between brown cotton and white cotton. Plant Physiology Journal, 2011, 47(7): 685-690. (in Chinese)
[8]    Liang M W, Liu H F, Lu X Y, Li Y H, Song W, Lu C F, Xiao X W, Li X B. Cloning of flavonoid 3′-hydroxylase gene (GhF3′H) and expressional characteristics of several genes associated with pigment synthesis in brown cotton (Gossypium hirsutum L.) fibers. Journal of Agricultural Biotechnology, 2011, 19(5): 808-815.
[9]    Li T C, Fan H H, Li Z P, Wei J, Lin Y, Cai Y P. The accumulation of pigment in fiber related to proanthocyanidins synthesis for brown cotton.Acta Physiologiae Plantarum, 2012, 34(2): 813-818.
[10]   汪淼, 陈沙沙, 蔡永萍, 林毅, 孙旭, 郭宁, 高俊山, 姜家生. 光质对棕色棉纤维色素形成的影响. 棉花学报, 2013, 25(4): 329-333.
Wang M, Chen S S, Cai Y P, Lin Y, Sun X, Guo N, Gao J S, Jiang J S. Effect of light quality on pigment formation in brown cotton fiber. Cotton Science, 2013, 25(4): 329-333. (in Chinese)
[11]   Feng H J, Tian X H, Liu Y C, Li Y J, Zhang X Y, Brain J J, Sun Y Q, Sun J. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoSONE, 2013, 8(3): e58820. doi:10.1371/journal.pone.0058820.
[12]   Xiao Y H, Yan Q, Ding H, Luo M, Hou L, Zhang M, Yao D, Liu H S, Li X, Zhao J, Pei Y. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS ONE, 2014, 9(1): e86344. doi:10.1371/journal.pone. 0086344.
[13]   Waghmare V N, Koranne K D. The present situation, problems and future potential of the colored cotton cultivation. Breeding Abroad, 2000, 19(1): 6.
[14]   王学德, 李悦有. 彩色棉纤维发育的特性研究. 浙江大学学报: 农业与生命科学版, 2002, 28(3): 237-242.
Wang X D, Li Y Y. Study on characteristics of colored cotton fiber development.Journal ofZhejiangUniversity: Agriculture and Life Sciences, 2002, 28(3):237-242. (in Chinese)
[15]   潘兆娥, 杜雄明, 孙君灵, 周忠丽, 庞保印. 遮光对彩色棉的色泽及纤维品质的影响. 棉花学报, 2006(18): 264-268.
Pan Z E, Du X M, Sun J L, Zhou Z L, Pang B Y. Influences of boll shading on fiber color and fiber quality of colored cotton. Cotton Science, 2006(18): 264-268. (in Chinese)
[16]   袁淑娜. 彩色棉纤维发育特性以及基于细胞质雄性不育的彩色长绒棉育种研究[D]. 杭州: 浙江大学, 2009.
Yuan S N. Studies on characteristics of colored cotton fiber development and breeding for colored cotton with long fiber based on cytoplasmic male sterility system[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
[17]   Yuan S N, Malik W, Hua S J, Bibi N, Wang X D. In vitro inhibition of pigmentation and fiber development in colored cotton. Journal of Zhejiang University: Science B, 2012, 13(6): 478-486.
[18]   Beasly C A, Ting I P. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. American Journal Botany, 1973, 60: 130-139.
[19]   吕萌, 倪志勇, 王娟, 胡文冉, 范玲. 外源阿魏酸对离体培养棉纤维生长发育的影响. 西北植物学报, 2011, 31(4): 0829- 0833.
Lü M, Ni Z Y, Wang J, Hu W R, Fan L. Development of the cotton fiber in vitro mediated by exogenous ferelic acid. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(4): 0829-0833. (in Chinese)
[20]   陈沙沙, 樊洪泓, 关蕾, 林毅, 蔡永萍, 钱森和, 孙旭. 光质对离体诱导棕色棉纤维基因表达影响的cDNA-SRAP分析. 棉花学报, 2013, 26(1): 34-40.
Chen S S, Fan H H, Guan L, Lin Y, Cai Y P, Qian S H, Sun X. Differential expression analysis of the effect of light quality on tissue culture of brown cotton fiber by cDNA-SRAP. Cotton Science, 2013, 26(1): 34-40. (in Chinese)
[21]   Tan J F, Tu L L, Deng F L, Hu H Y, Nie Y C, Zhang X L. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiology, 2013, 162(1): 86-95.
[22]   叶春燕, 欧婷, 陈进红, 何秋伶, 祝水金. 培养基、胚龄和激素配比对棉花胚珠离体培养纤维生长发育的影响. 棉花学报, 2013, 25(1): 17-23.
Ye C Y, Ou T, Chen J H, He Q L, Zhu S J. Effect of medium, ovule age, and hormone combinations on the fiber growth and development of cotton ovule culture in vitro. Cotton Science, 2013, 25(1): 17-23. (in Chinese)
[23]   徐楚年, 董合忠. 棉纤维发育与棉胚珠培养纤维. 北京: 中国农业大学出版社, 2006.
Xu C N, Dong H Z. Fiber Growth and Development of Cotton Ovule Culture in Vitro. Beijing: China Agricultural University Press, 2006. (in Chinese)
[24]   赵宇玮, 郝建国, 步怀宇, 贾敬芬. 小麦耐甘露醇变异细胞系的离体筛选及植株再生. 西北大学学报: 自然科学版, 2005, 35: 184-186, 190.
Zhao Y W, Hao J G, Bu H Y, Jia J F. In vitro selection of mannitol tolerant variants of wheat. Journal of Northwest University: Natural Science Edition, 2005, 35: 184-186, 190. (in Chinese)
[25]   Akalezi C O, Liu S, Li Q S, Yu J T, Zhong J J. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry, 1999, 34(6/7): 639-642.
[26]   肖文娟. 环境胁迫对欧洲花揪悬浮细胞生物量及次生代谢产物积累的影响[D]. 北京: 中国中医科学院, 2012.
Xiao W J. The influence of environmental stress on the biomass and the accumulation of secondary metabolites of suspension cultured cells of Sorbus aucuparia [D]. Beijing: Chinese Academy of Chinese Medical Science, 2012. (in Chinese)
[27]   Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Bio1ogy,2000, 51: 463-499.
[28]   何奇江, 李楠, 王波, 周文伟, 徐文娟. 盐胁迫下雷竹的离子选择性吸收能力研究. 浙江林业科技, 2010, 30(2): 56-59.
He Q J, Li N, Wang B, Zhou W W, Xu W J. Study on ionic selective absorption of Phyllostachy praecox cv. prevernalis under salt stress. Journal of Zhejiang for Science and Technology, 2010, 30(2): 56-59. (in Chinese)
[29]   Horie T, Schroeder J I. Sodium transporters in plants: Diverse genes and physiological function. Plant Physiology, 2004, 136: 2457-2462.
[30]   Pastrov A, Recck M, Eliaov A. Salicylic acid induces changes of coumarin metabolites in Matricariac hamomilla L.. Plant Science, 2004, 167: 819-824.
[31]   Mantel S H, Smith H. Cultural factors that influence secondary metabolite accumulations in plant cell and tissue culture//Plant Biotechnology. New York: Cambridge University Press, 1983: 75.
[32]   Chen J Y, Wen P F, Kong W F. Effect of salicylic acid on phenylpropanoids and phenylalan in ammonialyase in harvested grapeberries. Postharvest Biology Technology, 2006, 40: 64-72.
[33]   Wolski E A, Henriouez M A, Adaml R. Induction of defense genes and secondary metabolites in saskatoons (Amelanchier alnifolia Nutt. ) in response to Entomosporium mespili using jasmonic acid and Canada milkvetch extracts. Environmental and Experimental Botany, 2010, 68: 273-282.
[34]   Tan J F, Tu L L, Deng F L, Wu R, Zhang X L. Exogenous jasmonic acid inhibits cotton fiber elongation. Journal of Plant Growth Regulation, 2012, 31: 599-605.
[35]   Hao J, Tu L L, Hu H Y, Tan J F, Deng F L, Tang W X, Nie Y C, Zhang X L. GbTCP, a cotton TCP transcription factor, confers fiber elongation and root hair development by a complex regulating system. Journal of Experimental Botany, 2012, 63(17): 6267-6281.
[36]   Sun Y, Veerabomma S, Abdel-Mageed H A, Fokar M, Asami T, Yoshida S, Allen R D. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiology, 2005, 46: 1384-1391.
[37]   郑文光, 耿宇, 李常保, 李传友. 茉莉酸信号转导突变体ber15的分离和基因克隆表明油菜素内酯的合成影响茉莉酸信号转导. 植物学通报, 2006, 23(5): 603-610.
Zheng W G, Geng Y, Li C B, Li C Y. Characterization of jasmonic acid response mutant ber15 demonstrates cross talk between jasmonic acid and brassinosteriod signaling. Chinese Bulletin of Botany, 2006, 23(5): 603-610. (in Chinese)
[38]   李雄彪, 张金忠. 简明植物生物化学. 天津: 南开大学出版社, 1992: 341-344.
Li X B, Zhang J Z. Concise Plant Biochemistry. Tianjin: Nankai University Press, 1992: 341-344. (in Chinese)
[39]   欧阳光察, 薛应龙. 植物苯丙烷类代谢的生理意义及调控. 植物生理学通讯, 1988, 24(3): 9-16.
Ouyang G C, Xue Y L. Plant physiology significance and the regulation of the metabolism of benzene propane. Plant Physiology Communications, 1988, 24(3): 9-16. (in Chinese)
[40]   王燕, 刘卫红, 杜何为, 许峰, 程水源. 底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响. 果树学报, 2004, 21(5): 443-446.
Wang Y, Liu W H, Du H W, Xu F, Cheng S Y. Effects of substrate and terminal products on the phenylalanine ammonialyase (PAL)activities in vitro leaves of Ginkgo bioloba. Jounal of Fruit Science, 2004, 21(5): 443-446. (in Chinese)
[1] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
[2] WANG Qiang, AO Chang-Jin, GA 尔Di, LU De-Xun, GAO Min, DUAN Bin, FENG Zi-Qi. Influence of Infusing Amino Acids into the External Pudendal Artery on Nutrient Uptake in the Mammary Gland of Dairy Goats [J]. Scientia Agricultura Sinica, 2011, 44(21): 4481-4487.
[3] ,,,,,,,. Studies of Photosystem Complexes and Chlorophyll Synthesis in Chlorophyll-deficient Rice Mutant W1 [J]. Scientia Agricultura Sinica, 2006, 39(7): 1299-1305 .
[4] ,,,,,. Effects of Plant Growth Regulators on Lodging Resistance of Ramie Culm (Boehmeria nivea L.) [J]. Scientia Agricultura Sinica, 2005, 38(12): 2577-2581 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!