Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (2): 398-406.doi: 10.3864/j.issn.0578-1752.2015.02.20

• RESEARCH NOTES • Previous Articles    

Rapid Karyotype Analysis of Cucumber Varieties Based on Genomic in situ Hybridization

ZHANG Yun-xia, LOU Qun-feng, LI Zi-ang, WANG Yun-zhu, ZHANG Zhen-tao, LI Ji, CHEN Jin-feng   

  1. College of Horticulture, Nanjing Agricultural University/State Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095
  • Received:2014-06-24 Online:2015-01-16 Published:2015-01-16

Abstract: 【Objective】Using genomic in situ hybridization (GISH), metaphase chromosome analysis was performed for two variants of cucumber (C. sativus L.,2n = 2x = 14) [cultivated cucumber (C. sativus var. sativus) and wild cucumber (C. sativus var. hardwickii)] to quickly establish the chromosome karyotype of cucumber varieties, which will provide useful information for molecular cytogenetic research of cucumber. 【Method】Genomic DNA from cultivated cucumber ‘9930’ isolated using CTAB method and 45S rDNA were labeled with Dig-dUTP or Bio-dUTP through nick-translation method, and used as probes and hybridized onto the metaphase chromosomes of cultivated cucumber itself and wild cucumber using genomic in situ hybridization technique. Individual chromosome of two cucumber variants was analyzed based on the GISH banding, and 45 rDNA signals as well, and the karyotypes of these two variants were constructed. 【Result】 The GISH results showed that cucumber genomic DNA probes exhibited distinguished signal patterns on the chromosomes of two variants. The unique distribution and intensity of signals were observed on each chromosome, rather than the even distribution of signals across all chromosomes. For C. sativus var. sativus ‘9930’, GISH produced obvious signals at the both ends of chromosomes and pericentromeric heterochromatin regions on all other chromosomes except for chromosome 6 which only gave signals at the end of short arm and pericentromeric heterochromatin region. The signal patterns from each chromosome exhibited an obvious difference. 45S rDNA loci were mapped adjacent to centromeric regions on chromosomes 1, 2, 3, 4 and 7, among which three pairs of strong signals and two pair of weak signals were observed. However, the signal patterns from wild cucumber showed an obvious difference compared with that from ‘9930’. The GISH signals were observed only at one end of chromosomes 1, 2, 4 and 5, and pericentromeric heterochromatin regions of all chromosomes. 45S rDNA signals were observed only on the chromosomes 1, 2 and 3, in which chromosome 1 produced extremely strong signals and chromosomes 2 and 3 gave very weak signals. These results indicated that unique signal patterns for cucumber variants could be produced by GISH using cucumber genomic DNA. Each chromosome was characterized unequivocally according to the signal patterns, and a karyotype for each cucumber variant was constructed. Compared with the distribution of cucumber repetitive sequences from previous reports, the GISH patterns were found to locate mainly in tandem repetitive blocks of cucumber chromosomes. 【Conclusion】Results of this study showed that the cucumber genomic in situ hybridization could quickly reveal the distribution of genomic tandem repetitive sequences at one time, and could be efficiently applied to rapid karyotype analysis of different variants. It was also found that significant differentiation of repetitive sequences happened among cucumber variants.

Key words: cucumber varieties, GISH, chromosome, karyotype analysis, repetitive sequence

[1]    Guo S, Zheng Y, Joung J G, Liu S, Zhang Z, Crasta O R, Sobral B W, Xu Y, Huang S, Fei Z. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 2010, 11: 384.
[2]    Havey M J. Predominant paternal transmission of the mitochondrial genome in cucumber. The Journal of Heredity, 1997, 88: 232-235.
[3]    Huang S, Li R, Zhang Z, Li L, Gu X F, Fan W, Lucas W J, Wang X W, Xie B Y, Ni P X, Ren Y Y, Zhu H M, Li J, Lin K, Jin W W, Fei Z J, Li G C, et al. The genome of the cucumber, Cucumis sativus L. Nature Genetics, 2009, 41: 1275-1281.
[4]    Bhaduri P N, Bose P C. Cytogenetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. University College of Science and Technology, Calcutta University, 1947, 48: 237-256.
[5]    Hoshi Y, Plader W, Malepszy S. New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breeding, 1998, 117: 77-82.
[6]    Chen J F, Staub J E, Jiang J M. A reevaluation of karyotype in cucumber (Cucumis sativus L.). Genetic Resources and Crop Evolution, 1998, 45: 301-305.
[7]    Han Y H, Zhang Z H, Liu J H, Lu J Y, Huang S W, Jin W W. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenetic Genome Research, 2008, 122: 80-88.
[8]    Koo D H, Choi H W, Cho J, Hur Y, Bang J W. A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome, 2005, 48: 534-540.
[9]    Zhao X, Lu J Y, Zhang Z H, Hu J J, Huang S W, Jin W W. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Journal of Genetics and Genomics, 2011, 38(1): 39-45.
[10]   Hoshi Y, Plader W, Malepszy S. Physical mapping of 45S rDNA gene loci in the cucumber (Cucumis sativus L.) using fluorescence in situ hybridization. CARYOLOGIA, 1999, 52(1/2): 49-57.
[11]   Chen J F, Staub J E, Adelberg J W, Jiang J. Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Canadian Journal of Botany, 1999, 77: 389-393.
[12]   Trivedi R N, Roy R P. Cytological studies in Cucumis and Citrullus. Cytologia, 1970, 35: 561-569.
[13]   Ramachandran C, Seshadri V S. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.). Zeitschrift fur Pflanzenzüchtung, 1986, 96: 25-38.
[14]   Koo D H, Hur Y, Jin D C, Bang J W. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. Cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Molecular Cells, 2002, 13: 413-418.
[15]   Lou Q F, Zhang Y X, He Y H, Li J, Jia L, Cheng C Y, Guan W, Yang S Q, Chen J F. Single copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. The Plant Journal, 2014, 78: 1169-179.
[16]   Gaut B S. Evolutionary dynamics of grass genomes. New Phytologist, 2002, 154: 15-28.
[17]   Brandes A, Thompson H, Dean C, Heslop-Harrison J S. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Research, 1997, 5: 238-246.
[18]   蓝伟侦, 何光存, 吴士筠, 覃瑞. 利用水稻C0t-1 DNA和基因组DNA对栽培稻、药用野生稻和疣粒野生稻基因组的比较分析. 中国农业科学, 2006, 39(6): 1083-1090.
Lan W Z, He G C, Wu S Y, Qin R. Comparative analysis of Oryza sativa, O. officinalis and O. meyeriana genome with C0t-1 DNA and genomic DNA. Scientia Agricultura Sinica, 2006, 39(6): 1083-1090. (in Chinese)
[19]   段峰森, 刘虹, 陈雁, 覃瑞, 李刚. 利用C基因组DNA和C0t-1 DNA对药用野生稻、大颖野生稻基因组的比较分析. 湖北农业科学, 2011, 50(12): 2548-2552.
Duan F S, Liu H, Chen Y, Qin R, Li G. Comparative Analysis of Oryza officinalis and Oryza grandiglumis withC-genomic DNA and C0t-1 DNA probes. Hubei Agricultural Sciences, 2011, 50(12): 2548-2552. (in Chinese)
[20]   邱小芬, 刘虹, 覃瑞, 陈雁. 利用栽培稻基因组DNA对非洲野生稻进行染色体荧光原位杂交分析. 华中农业大学学报, 2010, 29(5): 537-540.
Qiu X F, Liu H, Qin R, Chen Y. Fish analysis of chromosomes of O. schweinfurthian with O. sativagenomic DNA probe. Journal of Huazhong Agricultural University, 2010, 29(5): 537-540. (in Chinese)
[21]   She C W, Liu J Y, Diao Y, Hu Z L, Song Y C. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. Journal of Genetics and Genomics, 2007, 34: 437-448
[22]   汤佳立, 戚大石, 张俞, 刘慧娟, 孙健英, 曹清河, 马代夫, 李宗芸. 荧光原位杂交技术分析栽培种甘薯(Ipomoea batatas cv. Xushu No.18)染色体. 遗传, 2010, 32(2): 177-182.
Tang J L, Qi D S, Zhang Y, Liu H J, Sun J Y, Cao Q H, Ma D F, Li Z Y. FISH analysis of chromosomes of sweet potato(Ipomoea batatas cv. Xushu No.18). Hereditas, 2010, 32(2): 177-182. (in Chinese)
[23]   Kwon J K, Kim B D. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Molecules and Cells, 2009, 27(2): 205-209.
[24]   Lou Q F, He Y H, Cheng C Y, Zhang Z H, Li J, Huang S W, Chen J F. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PLOS One, 2013, 5: 1-11.
[25]   Murray H G, Thompson W F. Rapid isolation of higher weight DNA. Nucleic Acids Research, 1980, 8: 4321-4326.
[26]   王瑞芳, 陈玉峰, 李政, 李凌. 越橘染色体观察及核型研究. 西南大学学报: 自然科学版, 2008, 30(2): 119-123.
Wang R F, Chen Y F, Li Z, Li L. Observation and research of chromosome karyotype of Vauinium. Journal of Southwest University: Natural Science Edition, 2008, 30(2): 119-123. (in Chinese)
[27]   王冰, 瞿海明, 许亮, 尹海波. 山扁豆的染色体核型分析. 中国野生植物资源, 2008, 27(6): 57-59.
Wang B, Qu H M, Xu L, Yin H B. Karyotype analysis of Cassia nomame chromosome. Chinese Wild Plant Resource, 2008, 27(6): 57-59. (in Chinese)
[28]   靳博, 王永, 康丽萍, 云兴福. 野生蔬菜地笋的染色体核型分析. 内蒙古农业大学学报, 2011, 32(2): 151-154.
Jin B, Wang Y, Kang L P, Yun X F. Karyotype analysis of wild vegetable bamboo shoots. Journal of Inner Mongolia Agricultural University, 2011, 32(2): 151-154. (in Chinese)
[29]   李娟娟, 王蕾, 贾俊忠, 陈福龙, 陈芳, 高剑锋. 黄瓜正常品种及一个芽黄突变体的核型分析. 湖北农业科学, 2011, 50(2): 296-300.
Li J J, Wang L, Jia J Z, Chen F L, Chen F, Gao J F. Chromosome karyotype analysis of normal and one mutant of light yellowsprout species of Cucumis sativus. Hubei Agricultural Sciences, 2011, 50(2): 296-300. (in Chinese)
[30]   李建军, 杨影丽, 范念斯, 李景原, 周延清. 雪莲果染色体数目及核型分析. 河南师范大学学报: 自然科学版, 2011, 39(2): 131-134.
Li J J, Yang Y L, Fan N S, Li J Y, Zhou Y Q. Chromosome number and karyotype analysis of Smallanthus sonchif olius. Journal of Henan Normal University: Natural Science Edition, 2011, 39(2): 131-134. (in Chinese)
[31]   杨飞, 龙舟锴, 徐延浩, 张文英. 花生自身基因组原位杂交分析. 湖北农业科学, 2013, 52(3): 527-529, 537.
Yang F, Long Z K, Xu Y H, Zhang W Y. Self-genomic in situ hybrization analysis of peanut. Journal of Hubei Agricultural Sciences, 2013, 52(3): 527-529, 537. (in Chinese)
[32]   Sebastian P, Schaefer H, Telford I R H, Renner S S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. The Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 14269-14273.
[33]   Meyers B C, Tingey S V, Morgante M. Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Research, 2001, 11: 1660-1676.
[34]   International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800.
[35]   Plohl M, Luchetti A, Meštrovi N. Mantovani B: satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin. Gene, 2008, 409: 72-82.
[36] Ganal M, Riede I. Hemleben V. Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). Journal of Molecular Evolution, 1986, 23: 23-30.
[1] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[2] CHEN Liu,NI Zheng,YU Bin,HUA JiongGang,YE WeiCheng,YUN Tao,LIU KeShu,ZHU YinChu,ZHANG Cun. Optimized Promoter Regulating of Duck Tembusu Virus E Protein Expression Delivered by a Vectored Duck Enteritis Virus in vitro [J]. Scientia Agricultura Sinica, 2020, 53(24): 5125-5134.
[3] CHEN JingNan,MA XiaoLan,WANG Zhen,LI ShiJin,XIE Hao,YE XingGuo,LIN ZhiShan. SSR Sequences and Development of PCR Markers Based on Transcriptome of Dasypyrum villosum No.1026 [J]. Scientia Agricultura Sinica, 2019, 52(1): 1-10.
[4] HAN Ran, LI TianYa, GONG WenPing, LI HaoSheng, SONG JianMin, LIU AiFeng, CAO XinYou, CHENG DunGong, ZHAO ZhenDong, LIU Cheng, LIU JianJun. New Resistance Sources of Wheat Stem Rust and Molecular Markers Specific for Relative Chromosomes That the Resistance Genes are Located on [J]. Scientia Agricultura Sinica, 2018, 51(7): 1223-1232.
[5] YingBin DING, LiZhen ZHANG, Rui XU, YanYan WANG, XiaoMing ZHENG, LiFang ZHANG, YunLian CHENG, Fan WU, QingWen YANG, WeiHua QIAO, JinHao LAN. Fine Mapping of Grain Length Associated QTL, qGL12 in Wild Rice (Oryza sativa L.) Using a Chromosome Segment Substitution Line [J]. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444.
[6] YE MingWang, ZHANG ChunZhi, HUANG SanWen. Construction of High Efficient Genetic Transformation System for Diploid Potatoes [J]. Scientia Agricultura Sinica, 2018, 51(17): 3249-3257.
[7] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
[8] MAYNUR·turdi, ZHANG Yan-hui, QIN Wei, SI Hong-zhang, YANG Xin-feng. The Analysis of Chromosome Karyotype of Malus sieversii Germplasm Resources Infraspecies in Xinjiang [J]. Scientia Agricultura Sinica, 2016, 49(8): 1540-1549.
[9] YAO Han, TANG Cai-guo, ZHAO Jing, ZHENG Qi, LI Bin, HAO Chen-yang, LI Zhen-sheng, ZHANG Xue-yong. Isolation of Thinopyrum ponticum Genome Specific Repetitive Sequences and Their Application for Effective Detection of Alien Segments in Wheat [J]. Scientia Agricultura Sinica, 2016, 49(19): 3683-3693.
[10] DU Pei, LIU Hua, LI Li-na, QIN Li, ZHANG Zhong-xin, HUANG Bing-yan, DONG Wen-zhao, TANG Feng-shou, QI Zeng-jun, ZHANG Xin-you. Chromosome Analysis of Peanut (Arachis hypogaea L.) Based on Sequential GISH-FISH [J]. Scientia Agricultura Sinica, 2015, 48(9): 1854-1863.
[11] YAO Qi-lun, CHEN Fa-bo, LIU Hong-fang, FANG Ping, ZHAO Cai-fang. B Chromosome Polymorphisms in Maize (Zea mays L.) Landrace Populations from Southwest China [J]. Scientia Agricultura Sinica, 2015, 48(14): 2697-2704.
[12] XIANG Shi-hua, WANG Wu-bin, HE Qing-yuan, YANG Hong-yan, LIU Cheng, XING Guang-nan, ZHAO Tuan-jie, GAI Jun-yi. Identification of QTL/Segments Related to Agronomic Traits Using CSSL Population Under Multiple Environments [J]. Scientia Agricultura Sinica, 2015, 48(1): 10-22.
[13] CHEN Qiang-1, 2 , YAN Long-1, YANG Chun-Yan-1, ZHANG Jia-Nan-1, SHI Xiao-Lei-1, DONG Fang-Yang-2, DENG Ying-Ying-1, 2 , HOU Wen-Huan-1, ZHANG Meng-Chen-1, 2 . SSR Markers Linked to High and Low Protein Content Strains Derived from 3 Backcross Combinations Under Jidou 12 Genetic Background [J]. Scientia Agricultura Sinica, 2014, 47(2): 230-239.
[14] WANG San-Hong, ZHANG Zhen, CAI Bin-Hua, QU Shen-Chun. Establishment and Application of Double Color DNA Fiber Fluorescence in situ Hybridization Using Bacterium Artificial Chromosomes in Apple [J]. Scientia Agricultura Sinica, 2014, 47(11): 2205-2213.
[15] YE Xin-Fu, YANG De-Wei. Progress in Research of Chromosome Segment Substitution Line Carrying Overlapping Chromosome Segments of the Whole Wild Rice Genome [J]. Scientia Agricultura Sinica, 2013, 46(24): 5075-5080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!