Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 195-204.doi: 10.3864/j.issn.0578-1752.2013.01.023

• RESEARCH NOTES • Previous Articles     Next Articles

Cloning and Characterization of a Noval Gene of MYB Family from Gossypium arboreum L.

 YANG  Zhao-恩, YANG  Zuo-Ren, LIU  Kun, LIU  Chuan-Liang, ZHANG  Chao-Jun, LI  Fu-Guang   

  1. 1.Cotton Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan
    2.Key Laboratory of Plant Genetics and Molecular Breeding of Zhoukou Normal University, Zhoukou 466000, Henan
  • Received:2012-09-18 Online:2013-01-01 Published:2012-11-13

Abstract: 【Objective】The objective of this study is to clone a novel gene of MYB family (GaMYB2) from Gossypium arboreum L., to analyze its expression patterns, and to characterize the deduced protein of this gene. 【Method】The full length of GaMYB2 was cloned by RACE and RT-PCR techniques, the gene sequence obtained and the putative amino acid sequence was analyzed by bioinformatics software. Its expression patterns were analyzed by real-time PCR under normal and PEG6000 stress respectively,which simulated drought tolerance.【Result】The GaMYB2 full length cDNA sequence is 1 117 bp, and the ORF is 840 bp, which encode a deduced protein including 279 amino acid residues. Blastp reseach revealed 40.50% to 68.20% similarities between GaMYB2 and other reported species, such as Oryza sativa (BAA23338.1) and Triticum aestivum (AAT37168.1). Subcellular localization showed that it expressed possibly in cell nucleus. The experiment results of real time PCR exhibited that GaMYB2 could be induced by 17% PEG6000, and had a higher expression level in root and flower than in other tissues. 【Conclusion】The GaMYB2 , cloned for the first time from G. arboreum L., is a new transcription factor of MBY family, and may play an important role in plant tolerance to drought stress.

Key words: Gossypium arboreum L. , GaMYB2 , drought tolerance simulation , up-regulate expression

[1]Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnology Journal, 2011, 9(1): 88-99.

[2]秦大河. 气候变化与干旱. 科技导报, 2009, 11: 3.

Qin D H. Climate and drought. Technology Review, 2009, 11: 3. (in Chinese)

[3]张玲, 李付广, 刘传亮, 张朝军, 武芝霞. 棉花耐旱相关基因研究进展. 安徽农业科学, 2008, 36(5): 1781-1782.

Zhang L, Li F G, Liu C L, Zhang C J, Wu Z X. Research progress on drought tolerant gene of cotton. Journal of Anhui Agricultural Sciences, 2008, 36(5): 1781-1782. (in Chinese)

[4]Lippold F, Sanchez D H, Musialak M, Schlereth A, Scheible W R, Hincha D K, Udvardi M K. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiology, 2009, 149(4): 1761-1772.

[5]Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y, Doonan J H, Watanabe A. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. The Plant Cell, 2001, 13(8): 1891-1905.

[6]Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10): 573-581.

[7]Du H, Zhang L, Liu L, Tang X F, Yang W J, Wu Y M, Huang Y B, Tang Y X. Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow), 2009, 74(1): 1-11.

[8]Abe H A, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 2002, 15(1): 63-78.

[9]Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Do Choi Y, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology, 2008, 146(2): 623-635.

[10]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology, 2005, 15(13): 1196-1200.

[11]Liang Y K, Dubos C, Dodd I C, Holroyd G H, Hetherington A M, Campbell M M. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Current Biology, 2005, 15(13): 1201-1206.

[12]Chen M, Wang Q Y, Cheng X G, Xu Z S, Li L C, Ye X G, Xia L Q, Ma Y Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353(2): 299-305.

[13]Qin Y, Wang M, Tian Y, He W, Han L, Xia G. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Molecular Biology Reports, 2012, 39(6): 7183-7192.

[14]Chen Y H , Yang X Y, He K, Liu M H, Liu J, Gao Z F, Lin Z Q, Zhao Y F, Wang X X, Qiu X M, Shen Y P, Zhang L, Deng X H, Luo J C, Deng X W, Chen Z L, Gu H Y, Qu L J. The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 2006, 60(1): 107-124.

[15]Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556.

[16]Salzman R, Fujita T, Zhu-Salzman K, Hasegawa P, Bressan R. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Molecular Biology Reporter, 1999, 17(1): 11-17.

[17]Lv S, Yang A, Zhang K, Wang L, Zhang J. Increase of glycinebetaine synthesis improves drought tolerance in cotton. Molecular Breeding, 2007, 20(3): 233-248.

[18]Zhang L, Li F G, Liu C L, Zhang C J, Zhang X Y. Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA library. BMC Research Notes, 2009, 2: 120.

[19]Patade V Y, Bhargava S, Suprasanna P. Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agriculture Ecosystems & Environment, 2009, 134(1-2): 24-28.

[20]Xiong J H, Fu B Y, Xu H X, Li Y S. Proteomic analysis of PEG-simulated drought stress-responsive proteins of rice leaves using a pyramiding rice line at the seedling stage. Botanical Studies, 2010, 51(2): 137-145.

[21]Geourjon C, Deleage G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 1995, 11(6): 681-684.

[22]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses.Current Opinion in Plant Biology, 2003, 6 (13695266): 410-417.

[23]Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012: 1-14.

[24]Shin D, Moon S J, Han S, Kim B G, Park S R, Lee S K, Yoon H J, Lee H E, Kwon H B, Baek D, Yi B Y, Byun M O. Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiology, 2011, 155(1): 421-432.

[25]Sun X, Li Y, Cai H, Bai X, Ji W, Ding X, Zhu Y. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. Journal of Plant Research, 2012, 125(3): 429-438.

[26]de Lacerda C F, Cambraia J, Oliva M A, Ruiz H A, Prisco J T N. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 2003, 49(2): 107-120.

[27]Silva-Ortega C O, Ochoa-Alfaro A E, Reyes-Aguero J A, Aguado-Santacruz G A, Jimenez-Bremont J F. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry, 2008, 46(1): 82-92.

[28]Szekely G, Abraham E, Cselo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. The Plant Journal, 2008, 53(1): 11-28.

[29]Yamchi A, Jazii F R, Mousavi A, Karkhane A A. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Delta(1)- pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress. Journal of Plant Biochemistry and Biotechnology, 2007, 16(1): 9-15.

[30]Coello P, Hey S J, Halford N G. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: Potential for manipulation to improve stress tolerance and increase yield. Journal of Experimental Botany, 2011, 62(3): 883-893.

[31]Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology, 1999, 41(5): 577-585.

[32]刘蕾, 杜海, 唐晓凤, 吴燕民, 黄玉碧, 唐益雄. MYB转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传, 2008, 30(10): 1265-1271.

Liu L, Du H, Tang X F, Wu Y M, Huang Y B, Tang Y X. The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Genetics, 2008, 30(10): 1265-1271. (in Chinese)

[33]Seo P J, Xiang F, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiology, 2009, 151(1): 275-289.

[34]De Smet I, Signora L, Beeckman T, Inzé D, Foyer C H, Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. The Plant Journal, 2003, 33(3): 543-555.
[1] SONG Gui-Fang-., FAN Wei-Li, WANG Jun-Juan, WANG De-Long, WANG Shuai, ZHOU Kai, YE Wu-Wei. Cloning and Characterization of Drought-stress Responsive Gene GhGR in Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2012, 45(8): 1644-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!