Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 18-29.doi: 10.3864/j.issn.0578-1752.2013.01.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Estimating Canopy Leaf Water Content in Wheat Based on Derivative Spectra

 LIANG  Liang, ZHANG  Lian-Peng, LIN  Hui, LI  Chun-Mei, YANG  Min-Hua   

  1. 1.School of Geodesy and Geomatics, Jiangsu Normal University, Xuzhou 221116, Jiangsu
    2.International Institute for Earth   System Science, Nanjing University, Nanjing 210008
    3.School of Geosciences and Info-Physics, Central South University,   Changsha 410083
  • Received:2012-06-26 Online:2013-01-01 Published:2012-10-26

Abstract: 【Objective】A method for fast, non-destructive and accurately monitoring leaf water content (LWC) of wheat (Triticum aestivum L.) was improved with hyperspectra technology in this paper. 【Method】The canopy leaf spectral reflectance in main growing seasons of wheat was collected under the condition of water stress experiment. Using the frist-order derivative spectra, 16 new hyperspectral indices were developed to quantify the wheat’s leaf water content (LWC). These indices were then compared with the commonly used hyperspectral indices including NDII, WBI and NDWI to screen out the spectral index which was sensitive to LWC for modeling. Using the inversion model, the OMIS image was calculated one pixel by one pixel, and the remote sensing mapping for LWC of wheat was accomplished. 【Result】The accuracy of inversion model (logarithmic function) which built by index FD730-955 was higher than that by the hyperspectral indices commonly used, as indicated by a calibration determination coefficient (C-R2) of 0.749 and a validation determination coefficient (V-R2) of 0.742. The eatimation values of 32 samples in prediction set were close to the measured values, and R2 and RMSE of regression fitted model between two dataset were 0.763 and 0.024, respectivly. Furthere more, the prediction accuracy of FD730-955 was least sensitive to the change of LWC and LAI among all of the hyperspectra indices and therefore least affected by the range of sample values and canopy density when used to estimate the LWC of wheat. The R2 and RMSE of the fitting model for the inversion and measured values were 0.635 and 0.027, respectively, and indicated the similarity between the inversion and measured value was high. 【Conclusion】 It is possible to eatimate LWC of wheat by derivative hyperspectra with a high accuracy, and FD730-955 is an optimal index for modeling.

Key words: hyperspectra remote sensing , derivative spectrum , wheat (Triticum aestivum L.) , leaf water content (LWC) , leaf area index (LAI)

[1]薛利红, 罗卫红, 曹卫星, 田永超. 作物水分和氮素光谱诊断研究进展. 遥感学报, 2003, 7(1): 73-80.

Xue L H, Luo W H, Cao W X, Tian Y C. Research progress on the water and nitrogen detection using spectral reflectance. Journal of Remote Sensing, 2003, 7(1): 73-80. (in Chinese)

[2]Moran M S, Clarke T R, Inoue Y, Vidal A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 1994, 49(3): 246-263.

[3]Müller K, Böttcher U, Meyer-Schatz F, Kage H. Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape (Brassica napus L.). Biosystems Engineering, 2008,101(2): 172-182.

[4]张佳华, 许云, 姚凤梅, 王培娟, 郭文娟, 李莉, Yang L M. 植被含水量光学遥感估算方法研究进展. 中国科学: 技术科学, 2010, 40(10): 1121-1129.

Zhang J H, Xu Y, Yao F M, Wang P J, Guo W J, Li L, Yang L M. Advances in estimation methods of vegetation water content based on optical remote sensing techniques. Science in China: Technology Science, 2010, 40(10): 1121-1129. (in Chinese)

[5]Curcio J A, Petty C C. The near infrared absorption spectrum of liquid water. Journal of the Optical Society of America, 1951, 41(5): 302-304.

[6]Thomas J R, Namken L N, Oether G F, Brown R G. Estimating leaf water content by reflectance measurement. Agronomy Journal, 1971, 63: 845-847.

[7]Hardisky M S, Klemas V, Smart R M. The influence of soil salinity, growth form and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 1983, 49(1): 77-83.

[8]Penuelas J, Filella I, Sweeano L. Cell wall elastivity and water index (R970nm/R900nm) in wheat under differen nitrogen availabilities. International Journal Remote Sensing, 1996, 17(2): 373-382.

[9]Gao B C. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996, 58(3): 257-266.

[10]Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1, theoretical approach. Remote Sensing of Environment, 2002, 82(2-3): 188-197.

[11]Ceccato P, Flasse S, Gregoire J M. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sensing of Environment, 2002, 82(2-3): 198-207.

[12]Seelig H D, Hoehn A, Stodieck L S, Klaus D M, Adams W W, Emery W J. Relations of remote sensing leaf water indices to leaf water thickness in cowpea, bean, and sugarbeet plants. Remote Sensing of Environment, 2008, 112(2): 445-455.

[13]Kim Y, Glenn D M, Park J, Ngugi H K, Lehman B L. Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture, 2011, 77(2): 155-160.

[14]Suárez L, Zarco-Tejada P J, Sepulcre-Cantó G, Miller J R, Jiménez-Muñoz J C, Sobrino J. Assesing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sensing of Environement, 2008, 112(2): 560-575.

[15]Suárez L, Zarco-Tejada P J, Berni J A J, González-Dugo V, Fereres E. Modelling PRI for water stress detection using radiative transfer models. Remote Sensing of Environment, 2009, 113(4): 730-744.

[16]Suárez L, Zarco-Tejada P J, González-Dugo V, Berni J A J, Sagardoy R, Morales F, Fereres E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagerty. Remote Sensing of Environment, 2010, 114(2): 286-298.

[17]Zarco-Tejada P J, González-Dugo V, Berni J A J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 2012, 117(2): 322-337.

[18]赵祥, 王锦地, 刘素红. 耦合辐射传输模型的植被含水量遥感改进监测. 红外与毫米波学报, 2010, 29(2): 185-240.

Zhao X, Wang J D, Liu S H. Modified monitoring method of vegetation water content based on coupled radiative transfer model. Journal of Infrared and Millimeter Waves, 2010, 29(2): 185-240. (in Chinese)

[19]Wang Q, Li P H. Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements. Hydrological Processes, 2012, 26(8): 1230-1241.

[20]李玉霞, 杨武年, 童玲, 简季, 顾行发. 基于光谱指数法的植被含水量遥感定量监测及分析. 光学学报, 2009, 29(5): 1403-1407.

Li Y X, Yang W N, Tong L, Jian J, Gu X F. Remote sensing quantitative monitoring and analysis of fuel moisture content based on spectral index. Acta Optica Sinica, 2009, 29(5): 1403-1407. (in Chinese)

[21]Cheng T, Rivard B, Sánchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 2011, 115(2): 659-670.

[22]刘小军, 田永超, 姚霞, 曹卫星, 朱艳. 基于高光谱的水稻叶片含水量监测研究. 中国农业科学, 2012, 45(3): 435-442.

Liu X J, Tian Y C, Yao X, Cao W X, Zhu Y. Monitoring leaf water content based on hyperspectra in rice. Scientia Agricultura Sinica, 2012, 45(3): 435-442. (in Chinese)

[23]Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 1990, 33(1): 55-64.

[24]浦瑞良, 宫鹏. 森林生物化学与 CASI 高光谱分辨率遥感数据的相关分析. 遥感学报, 1997, 1(2): 115-123.

Pu R L, Gong P. Relationships between forest biochemical concentrations and CASI data along the Oregon Transect. Journal of Remote Sensing, 1997, 1(2) : 115-123. (in Chinese)

[25]吴长山, 项月琴, 郑兰芬, 童庆禧. 利用高光谱数据对作物群体叶绿素密度估算的研究. 遥感学报, 2000, 4(3): 228-232.

Wu C S, Xiang Y Q, Zheng L F, Tong Q X. Estimating chlorophyll density of crop canopies by using hyperspectral data. Journal of Remote Sensing, 2000, 4(3): 228-232. (in Chinese)

[26]鞠昌华, 田永超, 朱艳, 姚霞, 曹卫星. 油菜光合器官面积与导数光谱特征的相关关系. 植物生态学报, 2008, 32 (3) 664-672.

Ju C H, Tian Y C, Zhu Y, Yao X, Cao W X. Relationship between derivative spectra and photosynthetic organ area in rapeseed (Brassica napus). Journal of Plant Ecology, 2008, 32(3): 664-672. (in Chinese)

[27]田永超, 杨杰, 姚霞, 朱艳, 曹卫星. 高光谱植被指数与水稻叶面积指数的定量关系. 应用生态学报, 2009, 20(7): 1685-1690.

Tian Y C, Yang J, Yao X, Zhu Y, Cao W X. Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice. Chinese Journal of Applied Ecology, 2009, 20(7): 1685-1690. (in Chinese)

[28]梁亮, 杨敏华, 邓凯东, 张连蓬, 林卉, 刘志霄. 一种估测小麦冠层氮含量的新高光谱指数. 生态学报, 2011, 31(21): 6594-6605.

Liang L, Yang M H, Deng K D, Zhang L P, Lin H, Liu Z X. A    new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecologica Sinica, 2011, 31(21):6594-6605. (in Chinese)

[29]梁亮, 杨敏华, 臧卓. 基于小波去噪与SVR的小麦冠层含氮率高光谱测定. 农业工程学报, 2010, 26(12): 248-253.

Liang L, Yang M H, Zang Z. Determination of wheat canopy nitrogen content ratio by hyperspectral technology based on wavelet denoising and support vector regression. Transactions of the CSAE, 2010, 26(12): 248-253. (in Chinese)

[30]Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire J M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 2001, 77(1): 22-33.

[31]董晶晶, 牛铮, 沈艳, 袁金国. 利用反射光谱信息提取叶片水分含量的方法比较. 江西农业大学学报, 2006, 28(4): 587-591.

Dong J J, Niu Z, Shen Y, Yuan J G. Comparison of the methods of obtaining leaf water content by using reflectance data. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(4): 587-591. (in Chinese)

[32]Colombo R, Meroni M, Marchesi A, Busetto L, Rossini M, Giardino C, Panigada C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sensing of Environment, 2008, 112(4): 1820-1834.

[33]Verstraete M M, Bernard P. Designing optimal spectral indices for remote sensing applications. IEEE Transactions on Geosciences and Remote Sensing, 1996, 34(5):1254-1265. 

[34]梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类. 光谱学与光谱分析, 2010, 30(10): 2724-2728. (in Chinese)

Liang L, Yang M H, Li Y F. Hyperspectral remote sensing image classification based on ICA and SVM algorithm. Spectroscopy and Spectral Analysis, 2010, 30(10): 2724-2728.

[35]梁亮, 杨敏华, 张连蓬, 林卉. 小麦叶面积指数的高光谱反演. 光谱学与光谱分析, 2011, 31(6): 1658-1662.

Liang L, Yang M H, Zhang L P, Lin H. Wheat leaf area index inversion using hyperspectral remote sensing technology. Spectroscopy and Spectral Analysis, 2011, 31(6): 1658-1662. (in Chinese)
[1] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
[2] ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867.
[3] SUN Hong, ZHANG Wei, WEI Xiao-Jing, WANG Hua-Zhong. Identification of Wheat Key Autophagy-Related Factor ATG18 and Profiling of Their Expression Under Biotic and Abiotic Stresses [J]. Scientia Agricultura Sinica, 2014, 47(9): 1657-1669.
[4] GUO Li-1, GUO Cheng-Jin-1, LU Wen-Jing-2, LI Xiao-Juan-2, XIAO Kai-1. Chromosome Localization of Phosphate Transporter Gene TaPHT2;1 and Its Effects on Phosphate Uptake and Utilization in Wheat [J]. Scientia Agricultura Sinica, 2014, 47(4): 613-621.
[5] HU Di-1, 2 , XU Zhao-Shi-2, CUI Xiao-Yu-2, CHEN Ming-2, LI Lian-Cheng-2, MA You-Zhi-2, ZHANG Xiao-Hong-1. Isolation and Functional Analysis of Salt-Responsive Gene TaSRP in Wheat [J]. Scientia Agricultura Sinica, 2014, 47(12): 2292-2299.
[6] WANG Lin-Lin-1, WANG Ping-1, 2 , WANG Zhen-Lin-1, SUN Ai-Qing-1, YANG Min-1, WANG Chun-Wei-1, YI Xiao-Mei-1, HAN Xiao-Yu-1, YIN Yan-Ping-11. Research on Heredity and Gene Expression Differences for Nitrogen Metabolism-Related Indices of Wheat Parents and Their Hybrids at Seedling Stage [J]. Scientia Agricultura Sinica, 2014, 47(12): 2300-2312.
[7] LI Xin-Chuan, XU Xin-Gang, BAO Yan-Song, HUANG Wen-Jiang, LUO Ju-Hua, DONG Ying-Ying, SONG Xiao-Yu, WANG Ji-Hua. Retrieving LAI of Winter Wheat Based on Sensitive Vegetation ndex by the Segmentation Method [J]. Scientia Agricultura Sinica, 2012, 45(17): 3486-3496.
[8] REN Yong-Zhe, XU Yan-Hua, GUI Xiang-Wei, WANG Su-Ping, DING Jin-Ping, ZHANG Qing-Chen, MA Yuan-Song, PEI Dong-Li. QTLs Analysis of Wheat Seedling Traits under Salt Stress [J]. Scientia Agricultura Sinica, 2012, 45(14): 2793-2800.
[9] DAI Shuang, LI Hao-Sheng, CHENG Dun-Gong, LIU Ai-Feng, CAO Xin-You, LIU Jian-Jun, SONG Jian-Min. Cloning of a 14-3-3 Gene from Developing Wheat Endosperm and Expression of its Recombinant Protein in Escherichia coli [J]. Scientia Agricultura Sinica, 2012, 45(10): 2076-2084.
[10] HE Zhong-hu,LAN Cai-xia1,CHEN Xin-min,ZOU Yu-chun,ZHUANG Qiao-sheng,XIA Xian-chun. Progress and Perspective in Research of Adult-Plant Resistance to Stripe Rust and Powdery Mildew in Wheat [J]. Scientia Agricultura Sinica, 2011, 44(11): 2193-2215 .
[11] YUE Ai-Qin,LI Ang,MAO Xin-Guo,CHANG Xiao-Ping,LI Run-Zhi,JIA Ji-Zeng,JING Rui-Lian. Single Nucleotide Polymorphism and Mapping of 6-SFT-A Gene Responsible for Fructan Biosynthesis in Common Wheat [J]. Scientia Agricultura Sinica, 2011, 44(11): 2216-2224 .
[12] TIAN Bin,ZHU Zhan-ling,LIU Bin,XIE Quan-gang,TIAN Ji-chun
. Quantitative Trait Loci for Dough Alveogram Characters in Cultivated Wheat
[J]. Scientia Agricultura Sinica, 2010, 43(24): 4991-4999 .
[13] LIU Bin,ZHAO Liang,ZHANG Kun-pu,ZHU Zhan-ling,TIAN Bin,TIAN Ji-chun
.

Genetic Dissection of Plant Height at Different Growth Stages in Common Wheat

[J]. Scientia Agricultura Sinica, 2010, 43(22): 4562-4570 .
[14] LI Xiao-juan,SUN Zhao-hua,KE Xin,LU Wen-jing,GUO Cheng-jin,GU Jun-tao,XIAO Kai
. Cloning, Characterization, and Expression Patterns Under Various Pi Levels of TaZAT6, a Zinc-Finger Protein Gene in Wheat (Triticum aestivum L.)#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3339-3345 .
[15] LI Jian-min,WANG Zhen-lin,YIN Yan-ping,GAO Rong-qi,LI Sheng-fu,YAN Su-hui,YU An-ling
. Comparison of Nitrogen Metabolism and Activities of the Related Enzymes During Grain Filling Stage Among Wheat Cultivars Differing in Protein Content #br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3078-3086 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!