Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1532-1544.doi: 10.3864/j.issn.0578-1752.2012.08.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Growth Promotion Potential and Distribution Features of Nitrogen-Fixing Bacteria in Field Environments

 SUN  Jian-Guang, HU  Hai-Yan, LIU  Jun, CHEN  Qian, GAO  Miao, XU  Jing, ZHOU  Yi-Qing   

  1. 1.中国农业科学院农业资源与农业区划研究所/农业部作物营养与施肥重点实验室,北京 100081
  • Received:2011-05-13 Online:2012-04-15 Published:2011-08-09

Abstract: 【Objective】 The objective of this experiment is to determine the dominant species and phylogenetic position of nitrogen fixing bacteria in crop rhizosphere and field environments, and to screen for nitrogen-fixing bacteria with growth promotion potential. 【Method】Nitrogen-free medium was used to culture nitrogen-fixing bacteria and nitrogenase activity was determined with acetylene reduction assay. Confrontation method was used to test antagonistic bacteria against plant pathogenic fungus. ACC (1-aminocyclopropane-1-carboxylate) nitrogen source was used to test ACC deaminase. 16S rDNA was amplified by PCR and 16S rDNA sequence was analysed with MEGA software. 【Result】 Nitrogenase activity of the 94 tested strains ranged from 0.99 to 180.59 nmol C2H4/h•mg protein. Fourty-two strains accounting for 44.7% of the tested strains showed nitrogenase activity above 10 nmol C2H4/h•mg protein. Paenibacillus and Bacillus were main groups, and their percentages were 33.0% and 26.6% of the tested strains, respectively. Six strains accounting for 6.4% of the tested strains showed antagonistic actions against plant pathogenic fungi Sclerotinia sclerotiorum, Gibberella zeae and Verticillium dahliae with the inhibitory rate from 23.9% to 65.9%. Twenty strains accounting for 21.3% of the tested strains produced ACC deaminase with activity ranging 0.33 to 21.98 µmol α-ketobutyric acid/h•mg protein, which were identified as Bacillus, Paenibacillus, Rhizobium, and extensively distributed in crop rhizosphere and field environments.【Conclusion】The dominant species of nitrogen-fixing bacteria in crop rhizosphere and field environments belong to the genus Paenibacillus and Bacillus. Most of the nitrogen-fixing bacterial strains possess strong potential for nitrogen fixation, part of them possess potential for growth promotion, and a few of them possess potential for disease resistance. The potential strains belong to Paenibacillus, Bacillus and Rhizobium, and extensively colonized in crops with no specificity.

Key words: nitrogen-fixing bacteria, nitrogenase, pathogenic fungus resistance, ACC deaminase, 16S rDNA

[1]Jin H J, Lü J, Chen S F. Paenibacillus sophorae sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. International Journal of Systememic and Evolutional Microbiology, 2011, 61(4): 767-771.

[2]Beneduzi A, Costa P B, Parma M, Melo I S, Bodanese-Zanettini M H, Passaglia L M. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. International Journal of Systememic and Evolutional Microbiology, 2010, 60(1): 128-133.

[3]Kämpfer P, Thummes K, Chu H I, Tan C C, Arun A B, Chen W M, Lai W A, Shen F T, Rekha P D, Young C C. Pseudacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing betaproteobacterium isolated from soil. International Journal of Systememic and Evolutional Microbiology, 2008, 58(2): 491-495.

[4]Mehnaz S, Weselowski B, Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. International Journal of Systememic and Evolutional Microbiology, 2007, 57(3): 620-624.

[5]Lee F L, Kuo H, Tai C J, Yokota A, Lo C C. Paenibacillus taiwanensis sp. nov., isolated from soil in Taiwan. International Journal of Systememic and Evolutional Microbiology, 2007, 57(6): 1351-1354.

[6]孙建光, 张燕春, 徐  晶, 胡海燕. 高效固氮芽孢杆菌选育及其生物学特性研究. 中国农业科学, 2009, 42(6): 2043-2051.

Sun J G, Zhang Y C, Xu J, Hu H Y. Isolation and biological characteristic investigation on efficient nitrogen-fixing bacilli. Scientia Agricultura Sinica, 2009, 42(6): 2043-2051. (in Chinese)

[7]中国农业微生物菌种保藏管理中心. 中国农业菌种目录. 北京: 中国农业科技出版社, 2001.

Agricultural Culture Collection of China. List of Agricultural Cultures of China. Beijing: China Agricultural Science and Technology Press, 2001. (in Chinese)

[8]Penrose D M M, Glick B R R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118(1): 10-15.

[9]孙建光, 徐  晶, 胡海燕, 张燕春, 刘  君, 王文博, 孙燕华. 中国十三省市土壤中非共生固氮微生物菌种资源研究. 植物营养与肥料学报, 2009, 15(6): 1450-1465.

Sun J G, Xu J, Hu H Y, Zhang Y C, Liu J, Wang W B, Sun Y H. Collection and investigation on asymbiotic nitrogen-fixing microbial resources from 13 provinces over China. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1450-1465. (in Chinese)

[10]刘晓光, 高克祥, 谷建才, 杜建玲, 唐秀光. 毛白杨内生菌优势种毛壳ND35室内拮抗作用的研究. 林业科学, 1999, 35(5): 57-62.

Liu X G, Gao K X, Gu J C, Du J L, Tang X G. Testing on the antagonism of the dominant of endophytic fungi from Populus tamentosa, Chaetomium ND35 in the laboratory. Scientia Silvae Sinicae, 1999, 35(5): 57-62. (in Chinese)

[11]Honma M, Shimomura T. Metabolism of 1-aminocyclopropane- 1-carboxylic acid. Agricultural and Biological Chemistry, 1978, 42(10): 1825-1831.

[12]严小龙. 根系生物学原理与应用. 北京: 科学出版社, 2007.

Yan X L. Root Biology Principles and Applications. Beijing: Science Press, 2007. (in Chinese)

[13]陈文新. 土壤和环境微生物学. 北京: 北京农业大学出版社, 1990: 152-156.

Chen W X. Soil and Enviromental Microbiology. Beijing: Beijing Agricultural University Press, 1990: 152-156. (in Chinese)

[14]Aizawa T, Ve N B, Nakajima M, SunairiM. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. International Journal of Systememic and Evolutional Microbiology, 2010, 60(5): 1152-1157.

[15]Cramer M J, Haghshenas N, Bagwell C E, Matsui G Y, Lovell C R. Celerinatantimonas diazotrophica gen. nov., sp. nov., a nitrogen- fixing bacterium representing a new family in the Gammaproteobacteria, Celerinatantimonadaceae fam. nov. International Journal of Systememic and Evolutional Microbiology, 2011, 61(5): 1053-1060.

[16]Rameshkumar N, Lang E, Nair S. Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). International Journal of Systememic and Evolutional Microbiology , 2010, 60(1): 179-186.

[17]Hong Y Y, Ma Y C, Zhou Y G, Gao F, Liu H C, Chen S F. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. International Journal of Systememic and Evolutional Microbiology, 2009, 59(11): 2656-2661.

[18]Jin H J, Zhou Y G, Liu H C, Chen S F. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. International Journal of Systememic and Evolutional Microbiology, 2011, 61(6): 1350-1355.

[19]Ramos P A, Van Trappen S, Thompson F L, Rocha R C, Barbosa H R, De Vos P, Moreira-Filho C A. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. International Journal of Systememic and Evolutional Microbiology, 2011, 61(4): 926-931.

[20]Díaz-Cárdenas C, Patel B K, Baena S. Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing a-phaproteobacterium, isolated from a Colombian saline spring. International Journal of Systememic and Evolutional Microbiology, 2010, 60(6): 1437-1443.

[21]Franche C, Linderstrom K, Elmerich C. Nitrogen-fixing bacteria associated with legumes and non-leguminous plants. Plant Soil, 2009, 321: 35-59.

[22]Belimov A A, Dodd I C, Safronova V I, Hontzeas N, Davies W J. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane- 1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. Journal of Experimental Botany, 2007, 58(6): 1485-1495.
[1] YU Xiao-Bo-1, 2 , SU Ben-Ying-1, GONG Wan-Zhuo-1, LUO Ling-1, LIU Wei-Guo-1, YANG Wen-Yu-1, ZHANG Ming-Rong-2, WU Hai-Ying-2, ZENG Xian-Tang-3. The Nodule Characteristics and Nitrogen Fixation of Soybean in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2014, 47(9): 1743-1753.
[2] LI Hui, DING Wei, JIANG Jun-Feng, WANG Huai-Biao. Research on the Inhibitory Mechanism of Imazethapyr to Nodule Nitrogenase Activity in Soybean [J]. Scientia Agricultura Sinica, 2013, 46(19): 4173-4178.
[3] QIN Bao-Jun, LUO Qiong, GAO Miao, HU Hai-Yan, XU Jing, ZHOU Yi-Qing, SUN Jian-Guang. Isolation of Wheat Endophytic Diazotrophs and Determination of 1-Aminocyclopropane-1-Carboxylate Deaminase [J]. Scientia Agricultura Sinica, 2012, 45(6): 1066-1073.
[4] WENG Pei-Fang, CHEN Xi, SHEN Xi-Quan, WU Zu-Fang, REN Jing. Microbial Community Diversity Analysis During the Pickled Processing of Mustard Tuber with Low-Salinity [J]. Scientia Agricultura Sinica, 2012, 45(2): 338-345.
[5] YANG Hai-Xu, WANG Yang, ZHAO Yan-Lin, ZHAO Jin, LIU Meng-Jun. Molecular Classification of Jujube Witches’ Broom (JWB) Associated Phytoplasma from Ziziphus jujuba Mill. ‘Zanhuangdazao’ [J]. Scientia Agricultura Sinica, 2011, 44(21): 4429-4437.
[6] HUANG Xian-qing,WANG Yu-fen,ZHAO Gai-ming,XIE Hua,GAO Xiao-ping,SUN Ling-xia,LI Miao-yun1,ZHANG Qiu-hui1,ZHAO Guang-hui
. Identification of A Microorganism Strain Isolated from the Corn Sausage by 16S rDNA Sequence Analysis and Optimization of Preservative Mixture
[J]. Scientia Agricultura Sinica, 2010, 43(24): 5112-5120 .
[7] WANG Ai-hua,YIN You-ping,XIONG Hong-li,LI Yan-fang,LI Jia,XIAN Jia-xu,WANG Zhong-kang
.

Endophytic Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus Phloem Tissue in Guangxi

[J]. Scientia Agricultura Sinica, 2010, 43(23): 4823-4833 .
[8] DING Wei,CAO Li-juan,CHENG Zhuo
. Effect of Imazethapyr on Nodule Nitrogenase and Nitrate Reductase Activity in Soybean
[J]. Scientia Agricultura Sinica, 2010, 43(20): 4192-4197 .
[9] . Genetic Diversity of Potato Scab Pathogens in China Based on 16S rDNA Sequences
[J]. Scientia Agricultura Sinica, 2009, 42(2): 499-504 .
[10] ,. Phenotypic and Genetic Diversity of Rhizobia Associated with Glycyrrhiza spp. Grown in Northern Regions of China [J]. Scientia Agricultura Sinica, 2006, 39(7): 1321-1327 .
[11] ,,,,,. Characterization and Identification on the Pathogen of Potato Scab in China [J]. Scientia Agricultura Sinica, 2006, 39(02): 313-318 .
[12] ,,,,. Effct of Continuous Cropping of Different Vegetables on DNA Polymorphorism of Soil Bacterial [J]. Scientia Agricultura Sinica, 2005, 38(10): 2076-2083 .
[13] ,,. Analysis of Rumen Bacterial Diversity of Goat by Denaturing Gradient Gel Electrophoresis and 16S rDNA Sequencing [J]. Scientia Agricultura Sinica, 2004, 37(09): 1374-1378 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!