中国农业科学 ›› 2026, Vol. 59 ›› Issue (4): 781-792.doi: 10.3864/j.issn.0578-1752.2026.04.006

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

集成光谱降维的冬小麦叶片磷含量估算

钱瑾1(), 李映雪2, 吴芳3, 邹晓晨1()   

  1. 1 南京信息工程大学遥感与测绘工程学院, 南京 210044
    2 南京信息工程大学生态与应用气象学院, 南京 210044
    3 江苏省泰州市兴化市气象局, 江苏兴化 225700
  • 收稿日期:2025-08-17 出版日期:2026-02-10 发布日期:2026-02-10
  • 通信作者:
    邹晓晨,E-mail:
  • 联系方式: 钱瑾,E-mail:357667908@qq.com。
  • 基金资助:
    国家自然科学基金(41801243)

Improved Leaf Phosphorus Content Estimation of Winter Wheat Using Ensemble Hyperspectral Dimensionality Reduction Method

QIAN Jin1(), LI YingXue2, WU Fang3, ZOU XiaoChen1()   

  1. 1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044
    2 School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044
    3 Xinghua Meteorological Bureau, Xinghua 225700, Jiangsu
  • Received:2025-08-17 Published:2026-02-10 Online:2026-02-10

摘要:

【目的】磷是作物生长发育的关键营养元素,其含量直接影响光合作用和生理功能,对叶片磷含量的精准监测对作物高效管理和产量预测至关重要。基于不同光谱预处理方法,结合不同光谱降维方法预测结果,提出一种集成光谱降维的叶片磷含量估算模型,拟为作物磷素营养高光谱诊断提供理论依据。【方法】通过2年田间试验,获取冬小麦4个关键生育时期(拔节期、抽穗期、开花期和灌浆期)冠层光谱反射率和叶片磷含量,通过去趋势变换、标准正态变量变换和一阶导数反射率变换生成衍生光谱特征,采用连续投影算法、最小绝对收缩和选择算法及竞争性自适应加权抽样算法进行光谱降维,识别敏感性光谱特征,并结合随机森林回归、支持向量回归和偏最小二乘回归分别构建单一光谱降维估算模型和集成光谱降维估算模型。【结果】叶片磷含量敏感性光谱特征主要集中在可见光、近红外及短波红外波段。与原始光谱反射率和其他衍生光谱特征相比,一阶导数反射率对探测叶片磷含量具有明显优势。在单一模型中,利用竞争性自适应加权抽样算法对一阶导数反射率降维,以降维后的敏感光谱特征驱动随机森林回归对叶片磷含量的估算精度最佳,在训练集中R2=0.843和RMSE=0.038%,在测试集中R2=0.756和RMSE=0.057%。集成光谱降维方法的估算结果进一步提升了模型精度,以不同光谱降维方法对一阶导数反射率降维后驱动随机森林回归所构建的集成模型估算精度最佳,训练集精度为R2=0.932和RMSE=0.025%,测试集精度为R2=0.817和RMSE=0.049%。【结论】集成光谱降维模型有效提升了冬小麦叶片磷含量的估算精度,为未来在不同高光谱遥感观测平台对不同作物类型、不同生长条件下大尺度作物营养和长势监测提供了新参考。

关键词: 高光谱遥感, 冬小麦, 磷含量估算, 光谱降维, 集成机器学习

Abstract:

【Objective】Phosphorus is a critical nutrient element for crop growth and development, directly influencing photosynthesis and physiological functions. Accurate monitoring of leaf phosphorus content is essential for efficient crop management and yield prediction. In this study, an ensemble hyperspectral dimensionality reduction model was proposed for estimating leaf phosphorus content based on different spectral preprocessing methods combined with various spectral dimensionality reduction techniques, in order to provide a theoretical basis for hyperspectral diagnosis of crop phosphorus nutrition.【Method】Through two years of field experiments, canopy spectral reflectance and leaf phosphorus content were collected for winter wheat during four key growth stages (jointing, heading, flowering, and grain filling) under three nitrogen application levels. Derived spectral features were generated using De-trending transformation, standard normal variate transformation, and first-order derivative reflectance transformation. Spectral dimensionality reduction was performed using successive projections algorithm (SPA), least absolute shrinkage and selection operator (LASSO), and competitive adaptive reweighted sampling (CARS). Single estimation models and integrated estimation models were constructed by combining random forest regression (RF), support vector regression (SVR), and partial least squares regression (PLSR).【Result】The leaf phosphorus content-sensitive spectral features were primarily concentrated in the visible, near-infrared, and short-wave infrared bands. Compared to original spectral reflectance and other derived spectral features, first-order derivative-derived spectral features demonstrated significant advantages in detecting leaf phosphorus content. Among the single models, the highest estimation accuracy was achieved when CARS was used for dimensionality reduction to select sensitive first-order derivative-derived features, driving the RF algorithm, with R2=0.843 and RMSE=0.038% in the training dataset, and R2=0.756 and RMSE=0.057% in the testing dataset. The integrated hyperspectral dimensionality reduction estimation further improved model accuracy. The integrated model driven by first-order derivative-derived spectral features and constructed using RF regression achieved the best estimation performance, with R2=0.932 and RMSE=0.025% in the training dataset, and R2=0.817 and RMSE=0.049% in the testing dataset.【Conclusion】Ensemble hyperspectral dimensionality reduction method effectively enhanced the estimation accuracy of leaf phosphorus content in winter wheat, providing theoretical support for large-scale monitoring of crop nutrition and growth under different hyperspectral remote sensing platforms, crop types, and growth conditions in the future.

Key words: hyperspectral remote sensing, winter wheat, estimation of phosphorus content, hyperspectral dimensionality reduction, ensemble machine learning