| [1] |
WANG C, XU L W, RAN Q X, PANG J Y, LAMBERS H, HE J. Crop domestication increased photosynthetic phosphorus-use efficiency associated with changes in leaf phosphorus fractions under low soil phosphorus conditions. Plant and Soil, 2025, 509(1): 915-928.
doi: 10.1007/s11104-024-06898-y
|
| [2] |
CHEN G, RAN Q X, WANG C, PANG J Y, REN M J, WANG Z Y, HE J, LAMBERS H. Enhancing photosynthetic phosphorus use efficiency through coordination of leaf phosphorus fractions, allocation, and anatomy during soybean domestication. Journal of Experimental Botany, 2025, 76(5): 1446-1457.
doi: 10.1093/jxb/erae427
|
| [3] |
VIVEIROS J, MORETTI L G, PACOLA M, JACOMASSI L M, DE SOUZA F M, RODRIGUES V A, BOSSOLANI J W, PORTUGAL J R, CARBONARI C A, CRUSCIOL C A C. Foliar application of phosphoric acid mitigates oxidative stress induced by herbicides in soybean, maize, and cotton crops. Plant Stress, 2024, 13: 100543.
doi: 10.1016/j.stress.2024.100543
|
| [4] |
YANG Q R, ZHANG H Y, ZHANG X, GENG S N, ZHANG Y J, MIAO Y H, LI L T, WANG Y L. Optimized phosphorus application enhances canopy photothermal responses, phosphorus accumulation, and yield in summer maize. Agronomy, 2025, 15(3): 514.
doi: 10.3390/agronomy15030514
|
| [5] |
班松涛, 田明璐, 常庆瑞, 王琦, 李粉玲. 基于无人机高光谱影像的水稻叶片磷素含量估算. 农业机械学报, 2021(8): 163-171.
|
|
BAN S T, TIAN M L, CHANG Q R, WANG Q, LI F L. Estimation of rice leaf phosphorus content using UAV-based hyperspectral images. Transactions of the Chinese Society for Agricultural Machinery, 2021(8): 163-171. (in Chinese)
|
| [6] |
SIEDLISKA A, BARANOWSKI P, PASTUSZKA-WOŹNIAK J, ZUBIK M, KRZYSZCZAK J. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant Biology, 2021, 21(1): 28.
doi: 10.1186/s12870-020-02807-4
pmid: 33413120
|
| [7] |
DE OLIVEIRA K M, FURLANETTO R H, RODRIGUES M, DOS SANTOS G L A A, REIS A S, TEIXEIRA CRUSIOL L G, RAFAEL NANNI M, CEZAR E, DE OLIVEIRA R B. Assessing phosphorus nutritional status in maize plants using leaf-based hyperspectral measurements and multivariate analysis. International Journal of Remote Sensing, 2022, 43(7): 2560-2580.
doi: 10.1080/01431161.2022.2064198
|
| [8] |
WANG J J, SHI T Z, LIU H Z, WU G F. Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation. Ecological Indicators, 2016, 67: 12-20.
doi: 10.1016/j.ecolind.2016.02.033
|
| [9] |
SAWUT M, HU X, ABULAITI Y, YIMAER R, MAIMAITIAILI B, LIU S S, PANG R. Estimation of leaf phosphorus content in cotton using fractional order differentially optimized spectral indices. Plants, 2025, 14(10): 1457.
doi: 10.3390/plants14101457
|
| [10] |
XIAO Q L, TANG W T, ZHANG C, ZHOU L, FENG L, SHEN J X, YAN T Y, GAO P, HE Y, WU N. Spectral preprocessing combined with deep transfer learning to evaluate chlorophyll content in cotton leaves. Plant Phenomics, 2022, 2022: 9813841.
doi: 10.34133/2022/9813841
|
| [11] |
杨伟博, 李映雪, 吴芳, 邹晓晨. 联合多种衍生光谱特征的冬小麦叶绿素含量估算. 农业工程学报, 2025, 41(15): 165-173.
|
|
YANG W B, LI Y X, WU F, ZOU X C. Estimating chlorophyll content of winter wheat using multiple derivative canopy spectra. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(15): 165-173. (in Chinese)
|
| [12] |
李岚涛, 汪善勤, 任涛, 马驿, 魏全全, 高雯晗, 鲁剑巍. 基于高光谱的冬油菜叶片磷含量诊断模型. 农业工程学报, 2016, 32(14): 209-218.
|
|
LI L T, WANG S Q, REN T, MA Y, WEI Q Q, GAO W H, LU J W. Evaluating models of leaf phosphorus content of winter oilseed rape based on hyperspectral data. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 209-218. (in Chinese)
|
| [13] |
CHEN S M, HU T T, LUO L H, HE Q, ZHANG S W, LU J S. Prediction of nitrogen, phosphorus, and potassium contents in apple tree leaves based on in-situ canopy hyperspectral reflectance using stacked ensemble extreme learning machine model. Journal of Soil Science and Plant Nutrition, 2022, 22(1): 10-24.
doi: 10.1007/s42729-021-00629-3
|
| [14] |
CHEN X K, LI F L, CHANG Q R. Combination of continuous wavelet transform and successive projection algorithm for the estimation of winter wheat plant nitrogen concentration. Remote Sensing, 2023, 15(4): 997.
doi: 10.3390/rs15040997
|
| [15] |
LI Z P, CHEN Z, CHENG Q, DUAN F Y, SUI R X, HUANG X Q, XU H G. UAV-based hyperspectral and ensemble machine learning for predicting yield in winter wheat. Agronomy, 2022, 12(1): 202.
doi: 10.3390/agronomy12010202
|
| [16] |
呼斯乐, 包玉龙, 图布新巴雅尔, 陶际峰, 郭恩亮. 基于无人机高光谱和集成学习的春小麦叶绿素含量反演. 中国农业科技导报, 2025, 27(06): 93-103.
|
|
HU S L, BAO Y L, TUBUXINBAYAER , TAO J F, GUO E L. Chlorophyll content inversion of spring wheat based on unmanned aerial vehicle hyperspectral and integrated learning. Journal of Agricultural Science and Technology, 2025, 27(6): 93-103. (in Chinese)
|
| [17] |
BRANDT P, BEYER F, BORRMANN P, MÖLLER M, GERIGHAUSEN H. Ensemble learning-based crop yield estimation: A scalable approach for supporting agricultural statistics. GIScience & Remote Sensing, 2024, 61(1): 2367808.
|
| [18] |
ZHOU X J, YANG J H, SU Y, HE K, FANG Y L, SUN X Y, JU Y L, LIU W Z. Aggregation and assessment of grape quality parameters with visible-near-infrared spectroscopy: Introducing a novel quantitative index. Postharvest Biology and Technology, 2024, 218: 113131.
doi: 10.1016/j.postharvbio.2024.113131
|
| [19] |
REN G X, SUN Y M, LI M H, NING J M, ZHANG Z Z. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): Near-infrared spectroscopy and evolutionary algorithms. Journal of the Science of Food and Agriculture, 2020, 100(10): 3950-3959.
doi: 10.1002/jsfa.10439
pmid: 32329077
|
| [20] |
SUN X D, SUBEDI P, WALKER R, WALSH K B. NIRS prediction of dry matter content of single olive fruit with consideration of variable sorting for normalisation pre-treatment. Postharvest Biology and Technology, 2020, 163: 111140.
doi: 10.1016/j.postharvbio.2020.111140
|
| [21] |
SHI S J, ZHANG W H, MA Y Y, CAO C G, ZHANG G Y, JIANG Y. Near-infrared spectroscopy combined with effective variable selection algorithm for rapid detection of rice taste quality. Biosystems Engineering, 2024, 237: 214-219.
doi: 10.1016/j.biosystemseng.2023.12.004
|
| [22] |
ANWAR M R, EMEBIRI L, IP R H L, LUCKETT D J, CHAUHAN Y S, ZELEKE K T. Least absolute shrinkage and selection operator regression used to select important features when predicting wheat yield from various genotype groups. The Journal of Agricultural Science, 2024, 162(3): 245-259.
doi: 10.1017/S0021859624000479
|
| [23] |
ZHANG H Y, HE L, CHEN Q W, ABDULRAHEEM M I, MA G, ZHANG Y F, GU J J, HU J D, WANG C Y, FENG W. Multi-angular spectroscopic detection of winter wheat nitrogen fertilizer utilization status using integrated feature selection and machine learning. Computers and Electronics in Agriculture, 2025, 231: 109916.
doi: 10.1016/j.compag.2025.109916
|
| [24] |
王震, 李映雪, 吴芳, 邹晓晨. 冠层光谱红边参数结合随机森林机器学习估算冬小麦叶绿素含量. 农业工程学报, 2024, 40(4): 166-176.
|
|
WANG Z, LI Y X, WU F, ZOU X C. Estimation of winter wheat chlorophyll content by combing canopy spectrum red edge parameters with random forest machine learning. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(4): 166-176. (in Chinese)
|
| [25] |
SOLTANIKAZEMI M, MINAEI S, SHAFIZADEH-MOGHADAM H, MAHDAVIAN A. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture, 2022, 200: 107130.
doi: 10.1016/j.compag.2022.107130
|
| [26] |
SHEN L Z, GAO M F, YAN J W, WANG Q Z, SHEN H. Winter wheat SPAD value inversion based on multiple pretreatment methods. Remote Sensing, 2022, 14(18): 4660.
doi: 10.3390/rs14184660
|
| [27] |
王清华, 朱格格, 方雯, 刘诗诗, 鲁剑巍. 基于高光谱遥感的油菜叶片氮磷养分含量诊断. 作物学报, 2025, 51(5): 1326-1337.
doi: 10.3724/SP.J.1006.2025.44157
|
|
WANG Q H, ZHU G G, FANG W, LIU S S, LU J W. Diagnosis of nitrogen and phosphorus nutrient content in rapeseed leaves based on hyperspectral remote sensing. Acta Agronomica Sinica, 2025, 51(5): 1326-1337. (in Chinese)
doi: 10.3724/SP.J.1006.2025.44157
|
| [28] |
MAHAJAN G R, SAHOO R N, PANDEY R N, GUPTA V K, KUMAR D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precision Agriculture, 2014, 15(5): 499-522.
doi: 10.1007/s11119-014-9348-7
|
| [29] |
LI D, WANG C Y, JIANG H, PENG Z P, YANG J, SU Y X, SONG J, CHEN S S. Monitoring Litchi canopy foliar phosphorus content using hyperspectral data. Computers and Electronics in Agriculture, 2018, 154: 176-186.
doi: 10.1016/j.compag.2018.09.007
|
| [30] |
ACUÑA-ACOSTA D M, CASTELLANOS A E, LLANO-SOTELO J M, SARDANS J, PEÑUELAS J, ROMO-LEON J R, KOCH G W. Higher phosphorus and water use efficiencies and leaf stoichiometry contribute to legume success in drylands. Functional Ecology, 2024, 38(10): 2271-2285.
doi: 10.1111/fec.v38.10
|
| [31] |
TSUJII Y, ATWELL B J, LAMBERS H, WRIGHT I J. Leaf phosphorus fractions vary with leaf economic traits among 35 Australian woody species. New Phytologist, 2024, 241(5): 1985-1997.
doi: 10.1111/nph.19513
pmid: 38189091
|
| [32] |
ZHU G G, WANG Q H, ZHANG S M, GUO T Y, LIU S S, LU J W. A meta-analysis of crop leaf nitrogen, phosphorus and potassium content estimation based on hyperspectral and multispectral remote sensing techniques. Field Crops Research, 2025, 329: 109961.
doi: 10.1016/j.fcr.2025.109961
|
| [33] |
MENG X T, BAO Y L, LIU J G, LIU H J, ZHANG X L, ZHANG Y, WANG P, TANG H T, KONG F C. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102111.
doi: 10.1016/j.jag.2020.102111
|