[1] |
马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望. 杂交水稻, 2024, 39(1): 1-10.
|
|
MA G H, ZHENG D F, MU D W, WANG F B, DAI Q G, WEI Z W, FENG N J, WANG C L. Research progress and prospect of saline-alkali tolerant rice. Hybrid Rice, 2024, 39(1): 1-10. (in Chinese)
|
[2] |
孙明法. 加强耐盐碱水稻研究让盐碱地变成新粮仓. 大麦与谷类科学, 2022, 39(3): 1-2, 34.
|
|
SUN M F. Strengthen research on saline-alkali tolerant rice and turn saline-alkali land into a new granary. Barley and Cereal Sciences, 2022, 39(3): 1-2, 34. (in Chinese)
|
[3] |
LU K, LI C, GUAN J, LIANG W H, CHEN T, ZHAO Q Y, ZHU Z, YAO S, HE L, WEI X D, ZHAO L, ZHOU L H, ZHAO C F, WANG C L, ZHANG Y D. The PPR-domain protein SOAR1 regulates salt tolerance in rice. Rice, 2022, 15(1): 62.
doi: 10.1186/s12284-022-00608-x
pmid: 36463341
|
[4] |
YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 2018, 217(2): 523-539.
doi: 10.1111/nph.14920
pmid: 29205383
|
[5] |
LIANG X Y, LI J F, YANG Y Q, JIANG C F, GUO Y. Designing salt stress-resilient crops: Current progress and future challenges. Journal of Integrative Plant Biology, 2024, 66(3): 303-329.
doi: 10.1111/jipb.13599
|
[6] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911
pmid: 18444910
|
[7] |
ZHU J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71.
doi: 10.1016/s1360-1385(00)01838-0
pmid: 11173290
|
[8] |
CHENG X, HE Q, TANG S, WANG H, ZHANG X, LV M, LIU H, GAO Q, ZHOU Y, WANG Q, MAN X, LIU J, HUANG R, WANG H, CHEN T, LIU J. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytologist, 2021, 230(3): 1017-1033.
|
[9] |
HAZMAN M, HAUSE B, EICHE E, NICK P, RIEMANN M. Increased tolerance to salt stress in opda-deficient rice allene oxide cyclase mutants is linked to an increased ros-scavenging activity. Journal of Experimental Botany, 2015, 66(11): 3339-3352.
doi: 10.1093/jxb/erv142
pmid: 25873666
|
[10] |
LIU C T, MAO B G, YUAN D Y, CHU C C, DUAN M J. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 2022, 10(1): 13-25.
|
[11] |
REN Z H, GAO J P, LI L G, CAI X L, HUANG W, CHAO D Y, ZHU M Z, WANG Z Y, LUAN S, LIN H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
|
[12] |
LIU S P, ZHENG L Q, XUE Y H, ZHANG Q, WANG L, SHOU H X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 2010, 53(6): 444-452.
|
[13] |
FUKUDA A, NAKAMURA A, HARA N, TOKI S, TANAKA Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 2011, 233(1): 175-188.
|
[14] |
ZHAO S S, ZHANG Q K, LIU M Y, ZHOU H P, MA C L, WANG P P. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 2021, 22(9): 4609.
|
[15] |
HE Y Q, YANG B, HE Y, ZHAN C F, CHENG Y H, ZHANG J H, ZHANG H S, CHENG J P, WANG Z F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal, 2019, 97(6): 1089-1104.
doi: 10.1111/tpj.14181
pmid: 30537381
|
[16] |
ARABIA S, SHAH M N A, SAMI A A, GHOSH A, ISLAM T. Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. Physiology and Molecular Biology of Plants, 2021, 27(7): 1469-1485.
|
[17] |
LI H W, ZANG B S, DENG X W, WANG X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5): 1007-1018.
|
[18] |
TANG W, SUN J Q, LIU J, LIU F F, YAN J, GOU X J, LU B R, LIU Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting Glycine betaine biosynthesis in rice (Oryza sativa). Plant Molecular Biology, 2014, 86(4/5): 443-454.
|
[19] |
GHOSH A, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. The Plant Journal, 2014, 80(1): 93-105.
doi: 10.1111/tpj.12621
pmid: 25039836
|
[20] |
FAN X R, JIANG H Z, MENG L J, CHEN J G. Gene mapping, cloning and association analysis for salt tolerance in rice. International Journal of Molecular Sciences, 2021, 22(21): 11674.
|
[21] |
GANIE S A, MOLLA K A, HENRY R J, BHAT K V, MONDAL T K. Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 2019, 132(4): 851-870.
doi: 10.1007/s00122-019-03301-8
pmid: 30759266
|
[22] |
王才林. 江苏省优良食味粳稻品种培育的发展与启示. 中国稻米, 2022, 28(5): 82-91, 106.
doi: 10.3969/j.issn.1006-8082.2022.05.014
|
|
WANG C L. Development and enlightenment of Japonica rice breeding with good eating quality in Jiangsu Province. China Rice, 2022, 28(5): 82-91, 106. (in Chinese)
|
[23] |
王才林, 张亚东, 赵春芳, 魏晓东, 姚姝, 周丽慧, 朱镇, 陈涛, 赵庆勇, 赵凌, 路凯, 梁文化. 江苏省优良食味粳稻的遗传与育种研究. 遗传, 2021, 43(5): 442-458.
|
|
WANG C L, ZHANG Y D, ZHAO C F, WEI X D, YAO S, ZHOU L H, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, LU K, LIANG W H. Inheritance and breeding of Japonica rice with good eating quality in Jiangsu province. Hereditas (Beijing), 2021, 43(5): 442-458. (in Chinese)
|
[24] |
王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1): 1-6.
|
|
WANG C L, ZHANG Y D, ZHAO L, LU K, ZHU Z, CHEN T, ZHAO Q Y, YAO S, ZHOU L H, ZHAO C F, LIANG W H, SUN M F, YAN G H. Research status, problems and suggestions on salt-alkali tolerant rice. China Rice, 2019, 25(1): 1-6. (in Chinese)
|
[25] |
王世壮, 聂亚敏, 黄婧芬, 张巧玲, 郑崇珂, 谢先芝, 王艳艳, 邢梦, 陈文熹, 陈子易, 郑晓明, 王文生, 杨庆文, 乔卫华. 水稻核心种质耐盐鉴定与分子标记开发应用. 植物遗传资源学报, 2025, 26(3) 470-480.
|
|
WANG S Z, NIE Y M, HUANG J F, ZHANG Q L, ZHENG C K, XIE X Z, WANG Y Y, XING M, CHEN W X, CHEN Z Y, ZHENG X M, WANG W S, YANG Q W, QIAO W H. Identification of rice core germplasm for salt tolerance and application of molecular marker development. Journal of Plant Genetic Resources, 2025, 26(3): 470-480. (in Chinese)
|
[26] |
WU T M, LIN W R, KAO Y T, HSU Y T, YEH C H, HONG C Y, KAO C H. Identification and characterization of a novel chloroplast/ mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Molecular Biology, 2013, 83(4/5): 379-390.
|
[27] |
YANG C, MA B, HE S J, XIONG Q, DUAN K X, YIN C C, CHEN H, LU X, CHEN S Y, ZHANG J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 2015, 169(1): 148-165.
doi: 10.1104/pp.15.00353
pmid: 25995326
|
[28] |
TODA Y, TANAKA M, OGAWA D, KURATA K, KUROTANI K I, HABU Y, ANDO T, SUGIMOTO K, MITSUDA N, KATOH E, ABE K, MIYAO A, HIROCHIKA H, HATTORI T, TAKEDA S. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. The Plant Cell, 2013, 25(5): 1709-1725.
|
[29] |
HAZMAN M, SÜHNEL M, SCHÄFER S, ZUMSTEG J, LESOT A, BELTRAN F, MARQUIS V, HERRGOTT L, MIESCH L, RIEMANN M, HEITZ T. Characterization of jasmonoyl-isoleucine (JA-ile) hormonal catabolic pathways in rice upon wounding and salt stress. Rice, 2019, 12(1): 45.
doi: 10.1186/s12284-019-0303-0
pmid: 31240493
|
[30] |
YU J, ZHU C S, XUAN W, AN H Z, TIAN Y L, WANG B X, CHI W C, CHEN G M, GE Y W, LI J, DAI Z Y, LIU Y, SUN Z G, XU D Y, WANG C M, WAN J M. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nature Communications, 2023, 14(1): 3550.
doi: 10.1038/s41467-023-39167-0
pmid: 37321989
|
[31] |
DENG P, JING W, CAO C J, SUN M F, CHI W C, ZHAO S L, DAI J Y, SHI X Y, WU Q, ZHANG B L, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2210338119.
|
[32] |
ALFATIH A, WU J, JAN S U, ZHANG Z S, XIA J Q, XIANG C B. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant, Cell & Environment, 2020, 43(11): 2743-2754.
|
[33] |
ZHANG Y, LAN H X, SHAO Q L, WANG R Q, CHEN H, TANG H J, ZHANG H S, HUANG J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 2016, 67(1): 315-326.
doi: 10.1093/jxb/erv464
pmid: 26512055
|
[34] |
SAKURABA Y, PIAO W L, LIM J H, HAN S H, KIM Y S, AN G, PAEK N C. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant & Cell Physiology, 2015, 56(12): 2325-2339.
|