中国农业科学 ›› 2025, Vol. 58 ›› Issue (10): 1908-1916.doi: 10.3864/j.issn.0578-1752.2025.10.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

论棉花多目标协同栽培

张艳军1(), 代建龙2, 董合忠1,2()   

  1. 1 山东省农业科学院经济作物研究所/养分资源高效利用全国重点实验室,济南 250100
    2 石河子大学农学院,新疆石河子 832003
  • 收稿日期:2024-11-13 接受日期:2025-04-21 出版日期:2025-05-21 发布日期:2025-05-21
  • 通信作者:
    董合忠,E-mail:
  • 联系方式: 张艳军,E-mail:zhangyanjunche@163.com。
  • 基金资助:
    国家自然科学基金(32372229); 国家棉花产业技术体系(CARS-15-15); 山东省棉花产业技术体系(SDAIT-03-01); 山东省自然科学基金面上项目(ZR2024MC222); 山东省农业科学院农业科技创新工程(CXGC2024D03)

On Multi-Objective Collaborative Cultivation in Cotton Production

ZHANG YanJun1(), DAI JianLong2, DONG HeZhong1,2()   

  1. 1 Institute of Industrial Crops, Shandong Academy of Agricultural Sciences/State Key Laboratory of Nutrient Use and Management, Jinan 250100
    2 College of Agriculture, Shihezi University, Shihezi 823003, Xinjiang
  • Received:2024-11-13 Accepted:2025-04-21 Published:2025-05-21 Online:2025-05-21

摘要:

随着我国农业供给侧结构性改革的深入推进以及对优质、安全、环保农产品需求的不断增长,棉花生产面临产量提升、品质优化、轻简高效、绿色环保等多重目标协调发展的挑战。为应对这些挑战,本文提出“棉花多目标协同栽培”(简称协同栽培)的新理念,系统梳理支撑该理念的基础性理论研究成果,包括精量播种促进成苗壮苗的机理、分区灌溉与水肥高效协同机制、密植化控塑型免整枝的群体调控机理、脱叶催熟集中成熟的生理机制,以及逆境适应与产量稳定性的补偿性生长机制。在此基础上,结合国内外相关研究成果,总结提出棉花协同栽培的关键技术,包括精量播种与逆境成苗技术,密植化控免整枝塑型技术,变量滴灌水肥协同管理技术,集中成熟调控技术,并论述这些技术在优化资源利用、提高生产效率和保证产品质量等方面的应用成效。案例分析表明,协同栽培通过综合应用这些关键技术,不仅能提升棉花产量和品质,也可实现环境保护与资源可持续利用,印证了多目标协同的可行性,契合当前绿色、环保、高效和可持续农业发展的要求。未来研究需进一步聚焦多目标协同的优化路径,深化“品种-环境-措施”互作机制,强化逆境补偿生长与资源高效利用的协同机制,推动多熟制系统内作物间协同,拓展协同栽培的外延效益。通过多学科交叉与技术创新,协同栽培有望为棉花产业的高质量发展提供系统化解决方案,助力棉花产业绿色转型与可持续发展。

关键词: 棉花, 协同栽培, 多目标优化, 可持续农业

Abstract:

With the advancement of agricultural supply-side structural reforms and the growing demand for high-quality, safe, and eco-friendly agricultural products in China, cotton production now faces the challenge of coordinating multiple objectives, including yield enhancement, quality optimization, simplified and efficient management, and environmental sustainability. To address these challenges, this paper proposes the novel concept of multi-objective collaborative cultivation (hereafter termed “collaborative cultivation”). We systematically elaborate on the theoretical foundations underpinning this approach, including mechanisms of precision sowing for robust seedling establishment, synergistic water-fertilizer management under partial root-zone irrigation, population regulation through high-density planting with chemical regulation and pruning-free canopy shaping, physiological mechanisms of defoliation-ripening for synchronized boll maturation, and compensatory growth strategies ensuring yield stability under abiotic stress. Building on these theorical bases and international research insights, we identify four core technologies of collaborative cultivation: (i) precision sowing coupled with stress-resilient seedling establishment under adversity, (ii) high-density planting with chemical regulation for canopy shaping, (iii) variable-rate drip irrigation with water-fertilizer synergy management, and (iv) synchronized maturation control technology. Empirical evaluations demonstrate that the integrated application of these technologies optimizes resource utilization, enhances productivity, and ensures fiber quality consistency, while reducing labor inputs and chemical usage. Case studies from major cotton-producing regions validate that collaborative cultivation achieves synergistic outcomes in productivity, sustainability, and economic viability, aligning with green agricultural development goals. Future research priorities include optimizing multi-objective trade-offs, deciphering genotype-environment-management interactions, enhancing stress compensation mechanisms, and extending collaborative principles to multi-cropping systems. Through interdisciplinary innovation and technology integration, this framework offers a systemic solution for high-quality cotton industry development, demonstrating significant potential to drive the sector's green transformation and sustainable advancement.

Key words: cotton, collaborative cultivation, multi-objective optimization, sustainable agriculture