[1] |
|
|
ZHANG H C, HU Y J, DAI Q G, XING Z P, WEI H Y, SUN C M, GAO H, HU Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004. (in Chinese)
|
[2] |
ZHANG Y J, DONG H Z. Yield and fiber quality of cotton. Encyclopedia of Renewable and Sustainable Materials. Amsterdam: Elsevier, 2020: 356-364.
|
[3] |
周静远, 代建龙, 冯璐, 张艳军, 万素梅, 董合忠. 我国现代棉花栽培理论和技术研究的新进展. 塔里木大学学报, 2023, 35(2): 1-12.
|
|
ZHOU J Y, DAI J L, FENG L, ZHANG Y J, WAN S M, DONG H Z. Research progress in theory and technology for modern cotton cultivation in China. Journal of Tarim University, 2023, 35(2): 1-12. (in Chinese)
|
[4] |
FENG L, CHI B J, DONG H Z. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China. Journal of Integrative Agriculture, 2022, 21(3): 597-609.
doi: 10.1016/S2095-3119(20)63457-8
|
[5] |
FENG L, WAN S M, ZHANG Y L, DONG H Z. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Research, 2024, 312: 109401.
|
[6] |
DAI J L, KONG X Q, ZHANG D M, LI W J, DONG H Z. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Research, 2017, 214: 142-148.
|
[7] |
张冬梅, 张艳军, 李存东, 董合忠. 论棉花轻简化栽培. 棉花学报, 2019, 31(2): 163-168.
doi: 10.11963/1002-7807.zdmdhz.20190313
|
|
ZHANG D M, ZHANG Y J, LI C D, DONG H Z. On light and simplified cotton cultivation. Cotton Science, 2019, 31(2): 163-168. (in Chinese)
|
[8] |
郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培. 作物学报, 2022, 48(3): 541-552.
doi: 10.3724/SP.J.1006.2022.14090
|
|
ZHENG S F, LIU X L, WANG W, XU D Q, KAN H C, CHEN M, LI S Y. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system. Acta Agronomica Sinica, 2022, 48(3): 541-552. (in Chinese)
|
[9] |
吴沣槭, 黄伟斌, 陈家乐, 韩迎春, 冯璐, 王国平, 李小飞, 李亚兵, 王占彪. 中国棉花生产碳排放核算与碳达峰预测. 农业环境科学学报, 2023, 42(3): 692-704.
|
|
WU F Q, HUANG W B, CHEN J L, HAN Y C, FENG L, WANG G P, LI X F, LI Y B, WANG Z B. Carbon emission accounting and carbon peak prediction for cotton production in China. Journal of Agro-Environment Science, 2023, 42(3): 692-704. (in Chinese)
|
[10] |
江瑜, 朱相成, 钱浩宇, 张楠, 丁艳锋. 水稻丰产与稻田甲烷减排协同的研究展望. 南京农业大学学报, 2022, 45(5): 839-847.
|
|
JIANG Y, ZHU X C, QIAN H Y, ZHANG N, DING Y F. Higher rice yields and lower methane emissions can be reconciled for rice cultivation: A review. Journal of Nanjing Agricultural University, 2022, 45(5): 839-847. (in Chinese)
|
[11] |
|
|
NIE J J, DAI J L, DU M W, ZHANG Y J, TIAN X L, LI Z H, DONG H Z. New development of modern cotton farming theory and technology in China-concentrated maturation cultivation of cotton. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298. doi: 10.3864/j.issn.0578-1752.2021.20.004. (in Chinese)
|
[12] |
LÜ Q Q, CHI B J, HE N, ZHANG D M, DAI J L, ZHANG Y J, DONG H Z. Cotton-based rotation, intercropping, and alternate intercropping increase yields by improving root-shoot relations. Agronomy, 2023, 13(2): 413.
|
[13] |
张立峰, 刘玉华, 杜雄. 试论作物生产系统的结构与功能. 河北农业大学学报, 2013, 36(2): 12-16.
|
|
ZHANG L F, LIU Y H, DU X. A discussion on the structure and functions of crop production system. Journal of Agricultural University of Hebei, 2013, 36(2): 12-16. (in Chinese)
|
[14] |
赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45(4): 485-498.
doi: 10.3724/SP.J.1006.2019.83051
|
|
ZHAO M, ZHOU B Y, MA W, LI C F, DING Z S, SUN X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agronomica Sinica, 2019, 45(4): 485-498. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83051
|
[15] |
|
|
DONG H Z, MAO S C, ZHANG W F, CHEN D H. On boll-setting optimization theory for cotton cultivation and its new development. Scientia Agricultura Sinica, 2014, 47(3): 441-451. doi: 10.3864/j.issn.0578-1752.2014.03.004. (in Chinese)
|
[16] |
DAI J L, LI W J, TANG W, ZHANG D M, LI Z H, LU H Q, ENEJI A E, DONG H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research, 2015, 180: 207-215.
|
[17] |
ZHOU J Y, NIE J J, KONG X Q, DAI J L, ZHANG Y J, ZHANG D M, CUI Z P, HUA Z Q, LI Z H, DONG H Z. Cotton yield stability achieved through manipulation of vegetative branching and photoassimilate partitioning under reduced seedling density and double seedlings per hole. Field Crops Research, 2023, 303: 109117.
|
[18] |
ZHANG Y J, LIU G Y, XU S Z, DAI J L, LI W J, LI Z H, ZHANG D M, CUI Z P, LI C D, DONG H Z. Nitric oxide reduces the yield loss of waterlogged cotton by enhancing post-stress compensatory growth. Field Crops Research, 2022, 283: 108524.
|
[19] |
KONG X Q, LI X, LU H Q, LI Z H, XU S Z, LI W J, ZHANG Y J, ZHANG H, DONG H Z. Monoseeding improves stand establishment through regulation of apical hook formation and hypocotyl elongation in cotton. Field Crops Research, 2018, 222: 50-58.
|
[20] |
KONG X Q, ZHOU J Y, LI X, LIU C M, CHU J F, ZHANG H, DONG H Z. HLS 1 promotes apical hook formation by regulating YUCCA8 and GH3.17 expression differently in the inner and outer side of the hook in cotton. Physiologia Plantarum, 2024, 176(1): e14148.
|
[21] |
LI T, ZHANG Y J, DAI J L, DONG H Z, KONG X Q. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crops Research, 2019, 230: 121-131.
|
[22] |
SUN L, ZHANG Y J, HOU W T, LI R, XU S Z, LI Z H, ZHANG D M, DAI J L, CUI Z P, ZHAN L J, NIE J J, DONG H Z. Genome-wide identification of isopentenyl transferase genes in cotton and their roles in regulating vegetative branching after topping. Industrial Crops and Products, 2025, 223: 119853.
|
[23] |
LUO Z, KONG X Q, ZHANG Y J, LI W J, ZHANG D M, DAI J L, FANG S, CHU J F, DONG H Z. Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant Physiology, 2019, 180(3): 1660-1676.
doi: 10.1104/pp.19.00315
pmid: 31079035
|
[24] |
KONG X Q, LUO Z, DONG H Z, LI W J, CHEN Y Z. Non-uniform salinity in the root zone alleviates salt damage by increasing sodium, water and nutrient transport genes expression in cotton. Scientific Reports, 2017, 7: 2879.
doi: 10.1038/s41598-017-03302-x
pmid: 28588258
|
[25] |
董合忠. 棉花集中成熟轻简高效栽培. 北京: 科学出版社, 2019, 1-87.
|
|
DONG H Z. Light and Efficient Cultivation with Concentrated Maturation in Cotton. Beijing: Science Press, 2019, 1-87. (in Chinese)
|
[26] |
KONG X Q, LUO Z, DONG H Z, ENEJI A E, LI W J. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. Journal of Experimental Botany, 2016, 67(8): 2247-2261.
|
[27] |
DAI J L, CUI Z P, ZHANG Y J, ZHAN L J, NIE J J, CUI J Q, ZHANG D M, XU S Z, SUN L, CHEN B, DONG H Z. Enhancing stand establishment and yield formation of cotton with multiple drip irrigation during emergence in saline fields of Southern Xinjiang. Field Crops Research, 2024, 315: 109482.
|
[28] |
LU H Q, DAI J L, LI W J, TANG W, ZHANG D M, ENEJI A E, DONG H Z. Yield and economic benefits of late planted short-season cotton versus full-season cotton relayed with garlic. Field Crops Research, 2017, 200: 80-87.
|
[29] |
CHI B J, ZHANG Y J, ZHANG D M, ZHANG X J, DAI J L, DONG H Z. Wide-strip intercropping of cotton and peanut combined with strip rotation increases crop productivity and economic returns. Field Crops Research, 2019, 243: 107617.
|
[30] |
CHI B J, LIU J, DAI J L, LI Z H, ZHANG D M, XU S Z, NIE J J, WAN S M, LI C D, DONG H Z. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crops Research, 2023, 302: 109059.
|
[31] |
LÜ Q Q, DAI J L, DING K D, HE N, LI Z H, ZHANG D M, XU S Z, LI C D, CHI B J, ZHANG Y J, DONG H Z. Managing interspecific competition to enhance productivity through selection of soybean varieties and sowing dates in a cotton-soybean intercropping system. Field Crops Research, 2024, 316: 109513.
|