中国农业科学 ›› 2022, Vol. 55 ›› Issue (5): 962-976.doi: 10.3864/j.issn.0578-1752.2022.05.010
乔远1,2(),杨欢1,雒金麟1,汪思娴1,梁蓝月1,陈新平1,2,张务帅1,2()
收稿日期:
2021-01-25
接受日期:
2021-06-16
出版日期:
2022-03-01
发布日期:
2022-03-08
通讯作者:
张务帅
作者简介:
乔远,E-mail: 基金资助:
QIAO Yuan1,2(),YANG Huan1,LUO JinLin1,WANG SiXian1,LIANG LanYue1,CHEN XinPing1,2,ZHANG WuShuai1,2()
Received:
2021-01-25
Accepted:
2021-06-16
Online:
2022-03-01
Published:
2022-03-08
Contact:
WuShuai ZHANG
摘要:
【目的】明确西北地区玉米生产的投入与生态环境风险。【方法】基于生命周期评价(LCA)方法对西北地区六省或自治区(新疆、陕西、山西、宁夏、内蒙古、甘肃)15年间(2004—2018年)玉米生产的投入(肥料、农药、柴油、地膜、种子及人工)与生态环境风险(温室气体排放、土壤酸化、水体富营养化及人体毒性)进行评价,定量化该地区单位面积(hm2)玉米生产投入与生态环境风险及其时空变化。【结果】西北地区玉米生产投入与生态环境风险较高,15年间平均肥料投入为233.1 kg N·hm-2,106.3 kg P2O5·hm-2和23.3 kg K2O·hm-2,农药、柴油、地膜、种子、人工投入量分别为6.5 kg·hm-2、93.2 L·hm-2、13.7 kg·hm-2、38.8 kg·hm-2和120.1 h·hm-2。玉米平均产量为7.9 t·hm-2,温室气体排放量为4 188 kg CO2 eq·hm-2,土壤酸化潜值为155.3 kg SO2-eq·hm-2,水体富营养化潜值为52.6 kg PO4-eq·hm-2,人体毒性为2.9 kg 1,4-DCB-eq·hm-2。相较于2004年,2018年西北地区玉米生产种植面积和玉米单产分别增加了79%和26.9%;投入整体呈现上升趋势,其中氮肥、磷肥和钾肥的单位面积投入量分别增加9.2%、52.7%和203.7%,农药、柴油、地膜的单位面积用量分别增加了303%、143%和108%,而种子和人工的单位面积投入量则分别降低了38.6%和50.8%。西北地区玉米生产的生态环境风险则整体呈现先上升后下降的趋势,其中单位面积温室气体排放量、土壤酸化潜值、水体富营养化潜值以及人体毒性分别增加了13.6%、15.8%、2.6%和302.5%。西北地区玉米生产15年间单位面积氮肥投入量及温室气体排放量最高的年份均为2016年,最低均为2007年。西北地区不同省份玉米生产单位面积的投入与生态环境风险存在较大差异。其中,甘肃的氮肥、地膜和人工单位面积投入量最高,3种投入的最低省区分别为山西、陕西和内蒙古;新疆的磷肥和柴油投入量最高,最低均为陕西;山西的钾肥投入量最高,最低为新疆;农药和种子的投入量最高分别为宁夏和新疆,最低均为山西,玉米的种植面积与单产最高的省区分别为内蒙古和新疆,最低的分别为宁夏和陕西。同时温室气体排放量与土壤酸化潜值均为甘肃最高,水体富营养化潜值为陕西最高,人体毒性为宁夏最高,均为山西最低;西北地区玉米生产投入量与生态环境风险综合值最高的省区为宁夏,山西为西北地区玉米生产综合生态环境风险最低的省份。【结论】西北地区玉米生产呈现高投入、高产出、高风险的特点,其投入与生态环境风险在不同时间和空间尺度上均存在较大差异。2004—2018年,西北地区玉米的种植面积、单产、投入整体呈增加趋势,生态环境风险整体呈现先上升后下降的趋势。未来玉米生产布局可考虑向高产和低环境风险的省份倾斜,在实现高产的同时降低生态环境风险。
乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976.
QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China[J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
表1
农资生产阶段各环节的温室气体排放、土壤酸化和水体富营养化的系数"
投入 Input | 单位 Unit | 温室气体排放量 Greenhouse gas emission rate (kg CO2-eq) | 酸化潜值 Soil acidification potential value (kg SO2-eq) | 水体富营养化潜值 Water eutrophication potential value (kg PO4-eq) | 参考文献 Reference |
---|---|---|---|---|---|
氮肥生产和运输 Nitrogen fertilizer production and transportation | kg N | 8.3 | 2.52E-02 | 3.03E-03 | [26-28] |
磷肥生产和运输 Phosphate fertilizer production and transportation | kg P2O5 | 0.79 | 6.00E-04 | 7.67E-05 | [26-28] |
钾肥生产和运输 Potash production and transportation | kg K2O | 0.55 | 4.80E-04 | 6.13E-05 | [26-28] |
农药生产和运输 Pesticide production and transportation | kg | 19.1 | 1.05E-02 | 1.94E-03 | [27-29] |
地膜生产和运输 Mulch production and transportation | kg | 2.8 | [30] | ||
柴油 Diesel | L | 3.75 | 6.58E-02 | 1.19E-02 | [27-28,31-32] |
表2
西北地区不同年份玉米生产投入情况"
年份 Year | N input (kg·hm-2) | P2O5 input (kg·hm-2) | K2O input (kg·hm-2) | 农药 Pesticide (kg·hm-2) | 柴油 Diesel (L·hm-2) | 地膜用量 Mulch (kg·hm-2) | 种子 Seed (kg·hm-2) | 人工 Labor (h·hm-2) |
---|---|---|---|---|---|---|---|---|
2004 | 222 | 90.5 | 13.6 | 2.35 | 54.0 | 9.47 | 50.3 | 167 |
2005 | 222 | 78.3 | 12.9 | 2.78 | 57.6 | 8.45 | 43.5 | 154 |
2006 | 228 | 86.7 | 15.4 | 2.61 | 69.5 | 9.71 | 43.3 | 142 |
2007 | 215 | 90.1 | 18.9 | 3.59 | 72.3 | 9.64 | 43.8 | 138 |
2008 | 224 | 85.2 | 16.7 | 3.87 | 55.1 | 9.36 | 42.3 | 135 |
2009 | 230 | 91.4 | 15.8 | 4.25 | 72.1 | 11.2 | 42.2 | 129 |
2010 | 242 | 103 | 16.7 | 5.70 | 68.1 | 13.7 | 39.4 | 126 |
2011 | 236 | 105 | 20.4 | 9.92 | 78.9 | 6.19 | 38.9 | 123 |
2012 | 232 | 108 | 24.7 | 7.79 | 83.3 | 16.1 | 37.5 | 117 |
2013 | 231 | 118 | 25.0 | 8.73 | 97.0 | 18.8 | 36.7 | 108 |
2014 | 239 | 123 | 28.7 | 8.78 | 108 | 18.7 | 35.5 | 103 |
2015 | 234 | 122 | 33.7 | 9.37 | 148 | 18.6 | 32.9 | 98.3 |
2016 | 250 | 126 | 31.0 | 8.71 | 164 | 18.2 | 32.2 | 92.9 |
2017 | 247 | 130 | 35.0 | 10.2 | 137 | 17.6 | 32.6 | 85.5 |
2018 | 243 | 138 | 41.3 | 9.44 | 131 | 19.7 | 30.9 | 82.2 |
平均 Mean | 233 | 106 | 23.3 | 6.54 | 93.2 | 13.7 | 38.8 | 120 |
表3
西北地区不同省份玉米生产投入情况"
省份 Province | N N input (kg·hm-2) | P2O5 P2O5 input (kg·hm-2) | K2O K2O input (kg·hm-2) | 农药 Pesticide (kg·hm-2) | 柴油 Diesel (L·hm-2) | 地膜用量 Mulch (kg·hm-2) | 种子 Seed (kg·hm-2) | 人工 Labor (h·hm-2) | 单产 Yield (t·hm-2) |
---|---|---|---|---|---|---|---|---|---|
新疆 Xinjiang | 276 | 150 | 2.77 | 7.13 | 119 | 24.4 | 50.0 | 81.4 | 10.0 |
陕西 Shaanxi | 267 | 72.8 | 11.3 | 6.75 | 73.5 | 0.24 | 41.3 | 148 | 6.33 |
山西 Shanxi | 185 | 100 | 51.2 | 5.26 | 89.4 | 5.33 | 30.3 | 125 | 8.25 |
宁夏 Ningxia | 282 | 130 | 17.8 | 12.2 | 90.4 | 2.69 | 37.1 | 129 | 8.21 |
内蒙古 Inner Mongolia | 217 | 108 | 25.2 | 7.82 | 105 | 10.8 | 36.1 | 71.5 | 7.59 |
甘肃 Gansu | 291 | 142 | 15.5 | 6.40 | 115 | 59.4 | 41.3 | 229 | 9.01 |
[1] | FAO. FAOSTAT Database-Resources. Food and Agriculture Organization of the United Nations. 2018. |
[2] | 国家统计局. http://www.stats.gov.cn . 北京: 中国统计出版社, 2019. |
National Bureau of Statistics. http://www.stats.gov.cn . Beijing: China Statistics Press, 2019. (in Chinese) | |
[3] | 李亮. 气候变化条件下中国西北地区主要作物需水量时空演变及干旱指标研究[D]. 杨凌: 西北农林科技大学, 2019. |
LI L. Impact of climate change on crop water requirement and drought indices in northwest China[D]. Yangling: Northwest A & F University, 2019. (in Chinese) | |
[4] |
姜明红, 刘欣超, 唐华俊, 辛晓平, 陈吉泉, 董刚, 吴汝群, 邵长亮. 生命周期评价在畜牧生产中的应用研究现状及展望. 中国农业科学, 2019, 52(9):1635-1645. doi: 10.3864/j.issn.0578-1752.2019.09.014.
doi: 10.3864/j.issn.0578-1752.2019.09.014 |
JIANG M H, LIU X C, TANG H J, XIN X P, CHEN J Q, DONG G, WU R Q, SHAO C L. Research progress and prospect of life cycle assessment in animal husbandry. Scientia Agricultura Sinica, 2019, 52(9):1635-1645. doi: 10.3864/j.issn.0578-1752.2019.09.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.09.014 |
|
[5] |
NOTARNICOLA B, SALA S, ANTON A, MCLAREN S J, SAOUTER E, SONESSON U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. Journal of Cleaner Production, 2017, 140:399-409. doi: 10.1016/j.jclepro.2016.06.071.
doi: 10.1016/j.jclepro.2016.06.071 |
[6] |
MCCLELLAND S C, ARNDT C, GORDON D R, THOMA G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review. Livestock Science, 2018, 209:39-45. doi: 10.1016/j.livsci.2018.01.008.
doi: 10.1016/j.livsci.2018.01.008 |
[7] |
刘松, 王效琴, 胡继平, 李强, 崔利利, 段雪琴, 郭亮. 施肥与灌溉对甘肃省苜蓿碳足迹的影响. 中国农业科学, 2018, 51(3):556-565. doi: 10.3864/j.issn.0578-1752.2018.03.013.
doi: 10.3864/j.issn.0578-1752.2018.03.013 |
LIU S, WANG X Q, HU J P, LI Q, CUI L L, DUAN X Q, GUO L. Effects of fertilization and irrigation on the carbon footprint of alfalfa in Gansu Province. Scientia Agricultura Sinica, 2018, 51(3):556-565. doi: 10.3864/j.issn.0578-1752.2018.03.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.03.013 |
|
[8] |
刘松, 王效琴, 崔利利, 段雪琴, 赵加磊. 关中平原饲料作物生产的碳足迹及影响因素研究. 环境科学学报, 2017, 37(3):1201-1208. doi: 10.13671/j.hjkxxb.2016.0274.
doi: 10.13671/j.hjkxxb.2016.0274 |
LIU S, WANG X Q, CUI L L, DUAN X Q, ZHAO J L. Carbon footprint and its impact factors of feed crops in Guanzhong Plain. Acta Scientiae Circumstantiae, 2017, 37(3):1201-1208. doi: 10.13671/j.hjkxxb.2016.0274. (in Chinese)
doi: 10.13671/j.hjkxxb.2016.0274 |
|
[9] |
王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析. 中国农业科学, 2015, 48(1):83-92. doi: 10.3864/j.issn.0578-1752.2015.01.09.
doi: 10.3864/j.issn.0578-1752.2015.01.09 |
WANG Z B, WANG M, CHEN F. Carbon footprint analysis of crop production in North China plain. Scientia Agricultura Sinica, 2015, 48(1):83-92. doi: 10.3864/j.issn.0578-1752.2015.01.09. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.01.09 |
|
[10] |
WANG W, GUO L P, LI Y C, SU M, LIN Y B, DE PERTHUIS C, JU X T, LIN E D, MORAN D. Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Climatic Change, 2015, 128(1):57-70. doi: 10.1007/s10584-014-1289-7.
doi: 10.1007/s10584-014-1289-7 |
[11] |
TAN Y C, XU C, LIU D X, WU W L, LAL R, MENG F Q. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crops Research, 2017, 205:135-146. doi: 10.1016/j.fcr.2017.01.003.
doi: 10.1016/j.fcr.2017.01.003 |
[12] |
KRÓL-BADZIAK A, PISHGAR-KOMLEH S H, ROZAKIS S, KSIĘŻAK J. Environmental and socio-economic performance of different tillage systems in maize grain production: Application of life cycle assessment and multi-criteria decision making. Journal of Cleaner Production, 2021, 278:123792. doi: 10.1016/j.jclepro.2020.123792.
doi: 10.1016/j.jclepro.2020.123792 |
[13] |
ZHAO R R, HE P, XIE J G, JOHNSTON A M, XU X P, QIU S J, ZHAO S C. Ecological intensification management of maize in northeast China: Agronomic and environmental response. Agriculture, Ecosystems & Environment, 2016, 224:123-130. doi: 10.1016/j.agee.2016.03.038.
doi: 10.1016/j.agee.2016.03.038 |
[14] |
齐晔, 李惠民, 王晓. 农业与中国的低碳发展战略. 中国农业科学, 2012, 45(1):1-6. doi: 10.3864/j.issn.0578-1752.2012.01.001
doi: 10.3864/j.issn.0578-1752.2012.01.001 |
QI Y, LI H M, WANG X. Agriculture and low-carbon development strategy in China. Scientia Agricultura Sinica, 2012, 45(1):1-6. doi: 10.3864/j.issn.0578-1752.2012.01.001. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.01.001 |
|
[15] |
ZHANG W S, HE X M, ZHANG Z D, GONG S, ZHANG Q, ZHANG W, LIU D Y, ZOU C Q, CHEN X P. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 2018, 167:75-86. doi: 10.1016/j.biosystemseng.2017.12.008.
doi: 10.1016/j.biosystemseng.2017.12.008 |
[16] |
YAN M, CHENG K, LUO T, YAN Y, PAN G X, REES R M. Carbon footprint of grain crop production in China-based on farm survey data. Journal of Cleaner Production, 2015, 104:130-138. doi: 10.1016/j.jclepro.2015.05.058.
doi: 10.1016/j.jclepro.2015.05.058 |
[17] |
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523):486-489. doi: 10.1038/nature13609.
doi: 10.1038/nature13609 |
[18] |
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010. doi: 10.1126/science.1182570.
doi: 10.1126/science.1182570 |
[19] | IPCC. Guildelines for National Greenhouse Gas Inventories, vol. 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programmer. Japan, 2006. |
[20] |
HELLWEG S, CANALS L M I. Emerging approaches, challenges and opportunities in life cycle assessment. Science, 2014, 344(6188):1109-1113. doi: 10.1126/science.1248361.
doi: 10.1126/science.1248361 |
[21] | 米慧玲. 不同管理模式下冬小麦夏玉米产量及环境效应的研究[D]. 保定: 河北农业大学, 2015. |
MI H L. Effects of different management models on yield and environment cost in the rotation systems of winter wheat and summer maize[D]. Baoding: Hebei Agricultural University, 2015. (in Chinese) | |
[22] | 张务帅. 我国玉米生产温室气体排放和活性氮损失评价及其减排潜力与调控途径[D]. 北京: 中国农业大学, 2019. |
ZHANG W S. Greenhouse gas emissions and reactive nitrogen losses assessment, mitigation potentials and management approaches of maize production in China[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
[23] | 国家发展和改革委员会价格司. 农产品成本收益汇编. 北京: 中国统计出版社, 2019. |
Price Department of National Development and Reform Commission. Compilation of Cost and Benefit of Agricultural Products. Beijing: China Statistics Press, 2019. (in Chinese) | |
[24] | 中华人民共和国国家发展改革委员会. https://www.ndrc.gov.cn . 北京: 国家信息中心, 2020. |
National Development and Reform Commission of the People’s Republic of China. https://www.ndrc.gov.cn . Beijing: State Information Center, 2020. (in Chinese) | |
[25] | SOLOMON S. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007. |
[26] |
ZHANG W F, DOU Z X, HE P, JU X T, POWLSON D, CHADWICK D, NORSE D, LU Y L, ZHANG Y, WU L, CHEN X P, CASSMAN K G, ZHANG F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China// Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):8375-8380. doi: 10.1073/pnas.1210447110.
doi: 10.1073/pnas.1210447110 |
[27] |
CUI Z L, YUE S C, WANG G L, ZHANG F S, CHEN X P. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology, 2013, 47(11):6015-6022. doi: 10.1021/ es4003026.
doi: 10.1021/ es4003026 |
[28] | 岳善超. 小麦玉米高产体系的氮肥优化管理[D]. 北京: 中国农业大学, 2013. |
YUE S C. Optimal nitrogen management for high-yielding wheat and maize cropping system[D]. Beijing: China Agricultural University, 2013. (in Chinese) | |
[29] |
CLARK S, KHOSHNEVISAN B, SEFEEDPARI P. Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: Student farm case study. Ecological Engineering, 2016, 88:186-194. doi: 10.1016/j.ecoleng.2015.12.036.
doi: 10.1016/j.ecoleng.2015.12.036 |
[30] | Reform Commission of China(NDRCC). Deputy director of the committee answered the questions about energy conservation and climate change. 2010. http://xwzx.ndrc.gov.cn/wszb/t20100310334122.htm . 2010-3-10.(in Chinese) |
[31] |
LIU Y X, LANGER V, HØGH-JENSEN H, EGELYNG H. Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production, 2010, 18(14):1423-1430. doi: 10.1016/j.jclepro.2010.05.025.
doi: 10.1016/j.jclepro.2010.05.025 |
[32] |
PISHGAR-KOMLEH S H, OMID M, HEIDARI M D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd Province. Energy, 2013, 59:63-71. doi: 10.1016/j.energy.2013.07.037.
doi: 10.1016/j.energy.2013.07.037 |
[33] | Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. New York: Cambridge University Press, 2014. |
[34] | IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Kyoto, Japan: Cambridge University Press, 2019. |
[35] |
HUIJBREGTS M A J, THISSEN U, GUINÉE J B, JAGER T, KALF D, DE MEENT D V, RAGAS A M J, SLEESWIJK A W, REIJNDERS L. Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere, 2000, 41(4):541-573. doi: 10.1016/S0045-6535(00) 00030-8.
doi: 10.1016/S0045-6535(00) 00030-8 |
[36] | DENG N S, WANG X B. Life Cycle Assessment. Beijing: Chemical Industry Press, 2003: 134-149. |
[37] |
SLEESWIJK A W, VAN OERS L F C M, GUINÉE J B, STRUIJS J, HUIJBREGTS M A J. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment, 2008, 390(1):227-240. doi: 10.1016/j.scitotenv.2007.09.040.
doi: 10.1016/j.scitotenv.2007.09.040 |
[38] |
HAUSCHILD M, OLSEN S I, HANSEN E, SCHMIDT A. Gone…but not away—addressing the problem of long-term impacts from landfills in LCA. The International Journal of Life Cycle Assessment, 2008, 13(7):547. doi: 10.1007/s11367-008-0039-3.
doi: 10.1007/s11367-008-0039-3 |
[39] |
王明新, 包永红, 吴文良, 刘文娜. 华北平原冬小麦生命周期环境影响评价. 农业环境科学学报, 2006, 25(5):1127-1132. doi: 10.3321/j.issn:1672-2043.2006.05.007.
doi: 10.3321/j.issn:1672-2043.2006.05.007 |
WANG M X, BAO Y H, WU W L, LIU W N. Life cycle environmental impact assessment of winter wheat in North China plain. Journal of Agro-Environment Science, 2006, 25(5):1127-1132. doi: 10.3321/j.issn:1672-2043.2006.05.007. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2006.05.007 |
|
[40] |
XU X M, LAN Y. Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production, 2017, 146:218-227. doi: 10.1016/j.jclepro.2016.11.181.
doi: 10.1016/j.jclepro.2016.11.181 |
[41] |
WANG M X, WU W L, LIU W N, BAO Y H. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Sustainable Development & World Ecology, 2007, 14(4):400-407. doi: 10.1080/13504500709469740.
doi: 10.1080/13504500709469740 |
[42] |
LIANG L, WANG Y C, RIDOUTT B G, LAL R, WANG D P, WU W L, WANG L Y, ZHAO G S. Agricultural subsidies assessment of cropping system from environmental and economic perspectives in North China based on LCA. Ecological Indicators, 2019, 96:351-360. doi: 10.1016/j.ecolind.2018.09.017.
doi: 10.1016/j.ecolind.2018.09.017 |
[43] |
HILLIER J, HAWES C, SQUIRE G, HILTON A, WALE S, SMITH P. The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 2009, 7(2):107-118. doi: 10.3763/ijas.2009.0419.
doi: 10.3763/ijas.2009.0419 |
[44] |
CHENG K, PAN G X, SMITH P, LUO T, LI L Q, ZHENG J W, ZHANG X H, HAN X J, YAN M. Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993-2007. Agriculture, Ecosystems & Environment, 2011, 142(3/4):231-237. doi: 10.1016/j.agee.2011.05.012.
doi: 10.1016/j.agee.2011.05.012 |
[45] |
LIU W W, ZHANG G, WANG X K, LU F, OUYANG Z Y. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Science of the Total Environment, 2018, 645:1296-1308. doi: 10.1016/j.scitotenv.2018.07.104.
doi: 10.1016/j.scitotenv.2018.07.104 |
[46] | 赵建华, 孙建好, 陈亮之, 马明生, 张绪成, 孙宁科. 河西走廊灌溉玉米施肥现状评价与减肥对策. 玉米科学, 2021. 29(4):169-174. |
ZHAO J H, SUN J H, CHEN L Z, MA M S, ZHANG X C, SUN N K. Evaluation of fertilizer application and fertilizer reduction for maize production in Hexi Corridor. Journal of Maize Sciences, 2021. 29(4):169-174. (in Chinese) | |
[47] | 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: VI.未来气候变化对中国种植制度北界的可能影响. 中国农业科学, 2011, 44(8):1562-1570. |
YANG X G, LIU Z J, CHEN F. The possible effects of global warming on cropping systems in China VI.Possible effects of future climate change on northern limits of cropping system in China. Scientia Agricultura Sinica, 2011, 44(8):1562-1570. (in Chinese) | |
[48] |
白氏杰, 于胜男, 明博, 陈亮, 王志刚, 谢瑞芝. 内蒙古不同生态区玉米品种产量差异分析. 中国种业, 2020(8):56-59. doi: 10.19462/j.cnki.1671-895x.2020.08.018.
doi: 10.19462/j.cnki.1671-895x.2020.08.018 |
BAI S J, YU S N, MING B, CHEN L, WANG Z G, XIE R Z. Analysis on the yield difference of maize varieties in different ecological regions of Inner Mongolia. China Seed Industry, 2020(8):56-59. doi: 10.19462/j.cnki.1671-895x.2020.08.018. (in Chinese)
doi: 10.19462/j.cnki.1671-895x.2020.08.018 |
|
[49] |
ZHANG G, WANG X K, SUN B F, ZHAO H, LU F, ZHANG L. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agricultural Systems, 2016, 146:1-10. doi: 10.1016/j.agsy.2016.03.012.
doi: 10.1016/j.agsy.2016.03.012 |
[50] |
HE X Q, QIAO Y H, LIU Y X, DENDLER L, YIN C, MARTIN F. Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China. Journal of Cleaner Production, 2016, 134:251-258. doi: 10.1016/j.jclepro.2015.12.004.
doi: 10.1016/j.jclepro.2015.12.004 |
[51] |
ZHANG J B, MÜLLER C, CAI Z C. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry, 2015, 84:199-209. doi: 10.1016/j.soilbio.2015.02.028.
doi: 10.1016/j.soilbio.2015.02.028 |
[52] |
ZHANG W S, LIANG Z Y, HE X M, WANG X Z, SHI X J, ZOU C Q, CHEN X P. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environmental Pollution, 2019, 246:559-565. doi: 10.1016/j.envpol.2018.12.059.
doi: 10.1016/j.envpol.2018.12.059 |
[53] |
丁相鹏, 李广浩, 张吉旺, 刘鹏, 任佰朝, 赵斌. 控释尿素基施深度对夏玉米产量和氮素利用的影响. 中国农业科学, 2020, 53(21):4342-4354. doi: 10.3864/j.issn.0578-1752.2020.21.004.
doi: 10.3864/j.issn.0578-1752.2020.21.004 |
DING X P, LI G H, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of base application depths of controlled release urea on yield and nitrogen utilization of summer maize. Scientia Agricultura Sinica, 2020, 53(21):4342-4354. doi: 10.3864/j.issn.0578-1752.2020.21.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.21.004 |
|
[54] |
AKIYAMA H, YAN X Y, YAGI K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 2010, 16(6):1837-1846. doi: 10.1111/j.1365-2486.2009. 02031.x.
doi: 10.1111/j.1365-2486.2009. 02031.x |
[55] | GRANT C. Policy aspects related to the use of enhanced-effificiency fertilizers: viewpoint of the scientific community. In: IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt: International Fertilizer Association, 2005: 1-11. |
[56] |
BOLAN N S, SAGGAR S, LUO J F, BHANDRAL R, SINGH J. Gaseous emissions of nitrogen from grazed pastures: processes, measurements and modelling, environmental implications, and mitigation//Advances in Agronomy. Amsterdam: Elsevier, 2004: 37-120. doi: 10.1016/s0065-2113(04)84002-1.
doi: 10.1016/s0065-2113(04)84002-1 |
[1] | 陈晓炜, 王小龙. 种养循环农作制度碳足迹评估—以鲜食玉米-奶牛-粪便还田循环模式为例[J]. 中国农业科学, 2023, 56(2): 314-332. |
[2] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[3] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[4] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[5] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[6] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[9] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[10] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[11] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[12] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[13] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[14] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[15] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响[J]. 中国农业科学, 2022, 55(3): 479-490. |
|