[1] |
王丽丽. 苹果白粉病病害及其防治. 农业科技与信息, 2014(7):40.
|
|
WANG L L. Apple powdery mildew disease and its control. Agricultural Science-Technology and Information, 2014(7):40. (in Chinese)
|
[2] |
闫文涛, 岳强, 冀志蕊, 周宗山, 仇贵生, 王雅偲. 苹果白粉病的诊断与防治实用技术. 果树实用技术与信息, 2019(9):28-30.
|
|
YAN W T, YUE Q, JI Z R, ZHOU Z S, QIU G S, WANG Y S. Practical techniques for diagnosis and control of apple powdery mildew. Practical Technology and Information of Fruit Trees, 2019(9):28-30. (in Chinese)
|
[3] |
PIETERSE C M J, VAN DER DOES D, ZAMIOUDIS C, LEON-REYES A, VAN WEES S C M. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 2012, 28:489-521.
doi: 10.1146/cellbio.2012.28.issue-1
|
[4] |
ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics, 1994, 244(6):563-571.
doi: 10.1007/BF00282746
|
[5] |
郑超, 郑二松, 王栩鸣, 李冬月, 杨勇, 余初浪, 周洁, 严成其, 陈剑平. 水稻WRKY转录调控因子研究进展. 生物技术通讯, 2018, 29(2):286-294.
|
|
ZHENG C, ZHENG E S, WANG X M, LI D Y, YANG Y, YU C L, ZHOU J, YAN C Q, CHEN J P. Research progress on rice WRKY transcription factors. Letters in Biotechnology, 2018, 29(2):286-294. (in Chinese)
|
[6] |
YANG P, CHEN Z. A family of dispersed repetitive DNA sequences in tobacco contain clusters of W-box elements recognized by pathogen-induced WRKY DNA-binding proteins. Plant Science, 2001, 161(4):655-664.
doi: 10.1016/S0168-9452(01)00454-X
|
[7] |
ECKEY C, KORELL M, LEIB K, BIEDENKOPF D, JANSEN C, LANGEN G, KOGEL K H. Identification of powdery mildew-induced barley genes by cDNA-AFLP: Functional assessment of an early expressed MAP kinase. Plant Molecular Biology, 2004, 55(1):1-15.
doi: 10.1007/s11103-004-0275-2
|
[8] |
MENG Y, WISE R P. HvWRKY10, HvWRKY19, and HvWRKY28 regulate Mla-triggered immunity and basal defense to barley powdery mildew. Molecular Plant-Microbe Interactions, 2012, 25(11):1492-1505.
doi: 10.1094/MPMI-04-12-0082-R
|
[9] |
WANG X, GUO R, TU M, WANG D, GUO C, WAN R, LI Z, WANG X. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Frontiers in Plant Science, 2017, 8:97.
|
[10] |
ZHAO J, ZHANG X, GUO R, WANG Y, GUO C, LI Z, CHEN Z, GAO H, WANG X. Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture, 2018, 132:359-370.
doi: 10.1007/s11240-017-1335-z
|
[11] |
WEI W, CUI M Y, YANG H, GAO K, XIE Y G, JIANG Y, FENG J Y. Ectopic expression of FvWRKY42, a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Science, 2018, 275:60-74.
doi: 10.1016/j.plantsci.2018.07.010
|
[12] |
SHEN Q H, SAIJO Y, MAUCH S, BISKUP C, BIERI S, KELLER B, SEKI H, ULKER B, SOMSSICH E, SCHULZE-LEFERT P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 2007, 315(5815):1098-1103.
doi: 10.1126/science.1136372
|
[13] |
PANDEY S P, ROCCARO M, SCHÖN M, LOGEMANN E, SOMSSICH I E. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal, 2010, 64(6):912-923.
doi: 10.1111/tpj.2010.64.issue-6
|
[14] |
SCHÖN M, TÖLLER A, DIEZEL C, ROTH C, WESTPHAL L, WIERMER M, SOMSSICH I E. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular Plant-Microbe Interactions, 2013, 26(7):758-767.
doi: 10.1094/MPMI-11-12-0265-R
|
[15] |
罗昌国, 袁启凤, 裴晓红, 吴亚维, 郑伟, 章镇. 富士苹果MdWRKY40b基因克隆及其对白粉病的抗性分析. 西北植物学报, 2013, 33(12):2382-2387.
|
|
LUO C G, YUAN Q F, PEI X H, WU Y W, ZHENG W, ZHANG Z. Cloning of MdWRKY40b gene in Fuji apple and its response to powdery mildew stress. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(12):2382-2387. (in Chinese)
|
[16] |
李厚华, 阙怡, 费昭雪, 王亚杰. 红肉苹果组织培养及转基因体系的建立与优化. 北方园艺, 2011(15):175-179.
|
|
LI H H, QUE Y, FEI Z X, WANG Y J. Establishment and optimization of tissue culture and transgenic system of Malus sieversii var. niedzwetzkyana. Northern Horticulture, 2011(15):175-179. (in Chinese)
|
[17] |
MUNDY D C, VANGA B R, THOMPSON S, BULMAN S. Assessment of sampling and DNA extraction methods for identification of grapevine trunk microorganisms using metabarcoding. New Zealand Plant Protection, 2018, 71:10-18.
doi: 10.30843/nzpp.2018.71
|
[18] |
何斐. 黄土高原丛枝菌根真菌(AMF)提高刺槐抗旱性机制[D]. 杨凌: 西北农林科技大学, 2016.
|
|
HE F. Arbuscular mycorrhizal fungi (AMF) in the Loess Plateau and mechanisms of AMF in drought resistance of Robinia pseudoacacia[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
|
[19] |
周兰, 张利义, 张彩霞, 康国栋, 田义, 丛佩华. 苹果实时荧光定量PCR分析中内参基因的筛选. 果树学报, 2012, 29(6):965-970.
|
|
ZHOU L, ZHANG L Y, ZHANG C X, KANG G D, TIAN Y, CONG P H. Screening of reference genes for real-time fluorescence quantitative PCR in apple (Malus×domestica). Journal of Fruit Science, 2012, 29(6):965-970. (in Chinese)
|
[20] |
王蕾, 顾婷婷, 甘立军. 森林草莓DDM1基因RNAi干扰载体的构建及功能分析. 生物学杂志, 2020, 37(5):39-43.
|
|
WANG L, GU T T, GAN L J. Construction and functional analysis of FveDDM1 gene RNAi interference vector in forest strawberries. Journal of Biology, 2020, 37(5):39-43. (in Chinese)
|
[21] |
APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55:373-399.
doi: 10.1146/arplant.2004.55.issue-1
|
[22] |
RIZHSKY L, LIANG H, MITTLER R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 2002, 130(3):1143-1151.
doi: 10.1104/pp.006858
|
[23] |
薛鑫, 张芊, 吴金霞. 植物体内活性氧的研究及其在植物抗逆方面的应用. 生物技术通报, 2013(10):6-11.
|
|
XUE X, ZHANG Q, WU J X. Research of reactive oxygen species in plants and its application on stress tolerance. Biotechnology Bulletin, 2013(10):6-11. (in Chinese)
|
[24] |
BAXTER A, MITTLER R, SUZUKI N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5):1229-1240.
doi: 10.1093/jxb/ert375
|
[25] |
田小敏. 基于转录组水平的苹果抗白粉病基因筛选与感病叶片生理指标分析[D]. 杨凌: 西北农林科技大学, 2019.
|
|
TIAN X M. Study on physiological indicators response to powdery mildew of apple and screening of the resistant gene based on transcriptome analysis[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
|
[26] |
黄世文, 王玲, 王全永, 唐绍清, 陈惠哲, 鄂志国, 王磊, 朱德峰. 纹枯病菌对不同水稻品种叶片中抗病性相关酶活性的影响. 中国水稻科学, 2008, 22(2):219-222.
|
|
HUANG S W, WANG L, WANG Q Y, TANG S Q, CHEN H Z, E Z G, WANG L, ZHU D F. Rice sheath blight pathogen (Rhizoctonia solani) impacts the activities of disease resistance-related enzymes in leaves of different rice varieties. Chinese Journal of Rice Science, 2008, 22(2):219-222. (in Chinese)
|
[27] |
谷医林. 瓜类白粉病生防菌LJ1的鉴定和诱导抗病性研究及生物安全性评价[D]. 郑州: 河南农业大学, 2013.
|
|
GU Y L. The studies of the identification, the induced resistance against cucurbits powdery mildew and the biological safety of biocontrol agent LJ1[D]. Zhengzhou: Henan Agricultural University, 2013. (in Chinese)
|
[28] |
POLIDOROS A N, MYLONA P V, SCANDALIOS J G. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Research, 2001, 10(6):555-569.
doi: 10.1023/A:1013027920444
|
[29] |
张亮, 王改兰, 段建南, 赵兰凤, 李华兴. 广谱生防菌对番茄枯萎病的防病效果及其机理. 中国生物防治学报, 2015, 31(6):897-906.
|
|
ZHANG L, WANG G L, DUAN J N, ZHAO L F, LI H X. Suppression of tomato Fusarium wilt disease by bacteria strains and their mechanism. Chinese Journal of Biological Control, 2015, 31(6):897-906. (in Chinese)
|
[30] |
XIANG X Y, CHEN J, XU W X, QIU J R, SONG L, WANG J T, TANG R, CHEN D, JIANG C Z, HUANG Z. Dehydration-induced WRKY transcriptional factor MfWRKY70 of Myrothamnus flabellifolia enhanced drought and salinity tolerance in Arabidopsis. Biomolecules, 2021, 11(2):327.
doi: 10.3390/biom11020327
|
[31] |
LUAN Q, CHEN C, LIU M, LI Q, WANG L, REN Z. CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. Plant Science, 2019, 279:59-69.
doi: 10.1016/j.plantsci.2018.11.002
|