[1] |
王晓鸣, 晋齐鸣, 石洁, 王作英, 李晓. 玉米病害发生现状与推广品种抗性对未来病害发展的影响. 植物病理学报, 2006,36(1):1-11.
|
|
WANG X M, JIN Q M, SHI J, WANG Z Y, LI X. The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future. Acta Phytopathologica Sinica, 2006,36(1):1-11. (in Chinese)
|
[2] |
KAMLE M, MAHATO D K, DEVI S, LEE K E, KANG S G, KUMAR P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins, 2019,11(6):328.
|
[3] |
KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, EDLER L, GRASL-KRAUPP B, HOGSTRAND C, HOOGENBOOM L, NEBBIA C S, PETERSEN A, ROSE M, ROUDOT A C, SCHWERDTLE T, VLEMINCKX C, VOLLMER G, WALLACE C, DALL'ASTA G S, TARANU I, ALTIERI A, ROLDÁN- TORRES R, OSWALD I P. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA Journal, 2018,16(5):5242.
|
[4] |
ROSS P F, RICE L G, PLATTNER R D, OSWEILER G D, WILSON T M, OWENS D L, NELSON H A, RICHARD J L. Concentrations of fumonisin B1 in feeds associated with animal health problems. Mycopathologia, 1991,114(3):129-135.
|
[5] |
MARASAS W F O. Fumonisins: Their implications for human and animal health. Natural Toxins, 1995,3(4):193-198.
|
[6] |
GELDERBLOM W C A, JASKIEWICZ K, MARASAS W F O, THIEL P G, HORAK R M, VLEGGAAR R, KRIEK N P. Fumonisins: Novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied & Environmental Microbiology, 1988,54(7):1806-1811.
|
[7] |
YOSHIZAWA T, YAMASHITA A, LUO Y. Fumonisin occurrence in corn form high-risk and low-risk areas for human esophageal cancer in China. Applied and Environmental Microbiology, 1994,60(5):1626-1629.
|
[8] |
UENO Y, IIJIMA K, WANG S D, SUGIURA Y, SEKIJIMA M, TANAKA T, CHEN C, YU S Z. Fumonisins as a possible contributory risk factor for primary liver cancer: A 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food and Chemical Toxicology, 1997,35(12):1143-1150.
|
[9] |
ZUO W, CHAO Q, ZHANG N, YE J, TAN G, LI B, XING Y, ZHANG B, LIU H, FENGLER K A, ZHAO J, ZHAO X, CHEN Y, LAI J, YAN J, XU M. A maize wall-associated kinase confers quantitative resistance to head smut. Nature Genetics, 2015,47(2):151-157.
|
[10] |
WANG C, YANG Q, WANG W, LI Y, GUO Y, ZHANG D, MA X, SONG W, ZHAO J, XU M. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. The New Phytologist, 2017,215(4):1503-1515.
|
[11] |
LUNSFORD J N, FUTRELL M C, SCOTT G E. Maternal influence on response of corn to Fusarium moniliforme. Phytopathology, 1974,65:223-225.
|
[12] |
PÉREZ-BRITO S, JEFFERS D, GONZÀLEZ-DE-LEÓN D, KHAIRALLAH M, CORTÉS-CRUZ M, VELÀZQUEZ-CARDELAS G, AZPIROZ-RIVERO S, SRINIVASAN G. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, México. Agrociencia, 2001,35:181-196.
|
[13] |
ROBERTSON-HOYT L A, JINES M P, BALINT-KURTI P J, KLEINSCHMIDT C E, WHITE D G, PAYNE G A, MARAGOS C M, MOLNÁR T L, HOLLAND J B. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Science, 2006,46(4):1734-1745.
|
[14] |
MASCHIETTO V, COLOMBI C, PIRONA R, PEA G, STROZZI F, MAROCCO A, ROSSINI L, LANUBILE A. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biology, 2017,17(1):20.
|
[15] |
SEPTIANI P, LANUBILE A, STAGNATI L, BUSCONI M, NELISSEN H, MARIO ENRICO P, DELL’ACQUA M, MAROCCO A. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: Novel targets for breeding. Scientific Reports, 2019,9(1):5665.
|
[16] |
张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007,33(3):491-496.
|
|
ZHANG F, WAN X Q, PAN G T. Molecular mapping of QTL for resistance to maize ear rot caused by Fusarium moniliforme. Acta Agronomica Sinica, 2007,33(3):491-496. (in Chinese)
|
[17] |
DING J Q, WANG X M, CHANDER S, YAN J B, LI J S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Molecular Breeding, 2008,22(3):395-403.
|
[18] |
STAGNATI L, LANUBILE A, SAMAYOA L F, BRAGALANTI M, GIORNI P, BUSCONI M, HOLLAND J B, MAROCCO A. A genome wide association study reveals markers and genes associated with resistance to Fusarium verticillioides infection of seedlings in a maize diversity panel. Genes, Genomes, Genetics, 2019,9(2):571-579.
|
[19] |
ZILA C T, OGUT F, ROMAY M C, GARDNER C A, BUCKLER E S, HOLLAND J B. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biology, 2014,14:372.
|
[20] |
LANUBILE A, FERRARINI A, MASCHIETTO V, DELLEDONNE M, MAROCCO A, BELLIN D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014,15(1):710.
|
[21] |
YAO L, LI Y, MA C, TONG L, DU F, XU M. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 2020,62(10):1535-1551.
|
[22] |
SUDARSHANA M R, ROY G, FALK B W. Methods for engineering resistance to plant viruses. Methods in Molecular Biology, 2007,354:183-195.
|
[23] |
WATERHOUSE P M, FUSARO A F. Viruses face a double defense by plant small RNAs. Science, 2006,313(5783):54-55.
|
[24] |
BAUM J A, BOGAERT T, CLINTON W, HECK G R, FELDMANN P, ILAGAN O, JOHNSON S, PLAETINCK G, MUNYIKWA T, PLEAU M, VAUGHN T, ROBERTS J. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007,25(11):1322-1326.
|
[25] |
KHATRI M, RAJAM M V. Targeting polyamines of Aspergillus nidulansby siRNA specific to fungal ornithine decarboxylase gene. Medical Mycology, 2007,45(3):211-220.
|
[26] |
TINOCO M, BÁRBARA D, DALL'ASTTA R, JOÃO P, ARAGÃO F. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biology, 2010,8:27.
|
[27] |
NOWARA D, GAY A, LACOMME C, SHAW J, RIDOUT C, DOUCHKOV D, HENSEL G, KUMLEHN J, SCHWEIZER P. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 2010,22(9):3130-3141.
|
[28] |
KOCH A, KUMAR N, WEBER L, KELLER H, IMANI J, KOGEL K H. Host-induced gene silencing of cytochrome P450 lanosterol C14 -demethylase-encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the USA, 2013,110(48):19324-19329.
|
[29] |
THAKARE D, ZHANG J, WING R A, COTTY P J, SCHMIDT M A. Aflatoxin-free transgenic maize using host-induced gene silencing. Science Advances, 2017,3(3):e1602382.
|
[30] |
BLUHM B H, ZHAO X, FLAHERTY J E, XU J R, DUNKLE L D. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Molecular Plant-Microbe Interactions, 2007,20(6):627-636.
|
[31] |
JIANG J, LIU X, YIN Y, MA Z. Involvement of a velvet protein FgVea in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS ONE, 2011,6(11):e28291.
|
[32] |
ADÁM A L, KOHUT G, HORNOK L. Fphog1, a hog-type map kinase gene, is involved in multistress response in Fusarium proliferatum. Journal of Basic Microbiology, 2010,48(3):151-159.
|
[33] |
COLABARDINI A C, BROWN N A, SAVOLDI M, GOLDMAN M H S, GOLDMAN G H. Functional characterization of Aspergillus nidulans ypka, a homologue of the mammalian kinase SGK. PLoS ONE, 2013,8(3):e57630.
|
[34] |
CHOI Y E, SHIM W B. Functional characterization of Fusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit. Microbiology, 2008,154(1):326-336.
|
[35] |
EATON C J, CABRERA I E, SERVIN J A, WRIGHT S J, COX M P, BORKOVICH K A. The guanine nucleotide exchange factor RIC8 regulates conidial germination through Gα proteins in Neurospora crassa. PLoS ONE, 2012,7(10):e48026.
|
[36] |
VIJAI B, SABINE B, ALBERT V, GOPALAN S, WEI Y D. Alanine: glyoxylate aminotransferase 1 is required for mobilization and utilization of triglycerides during infection process of the rice blast pathogen, Magnaporthe oryzae. Plant Signaling & Behavior, 2012,7(9):1206-1208.
|
[37] |
NGUYEN L N, JÖRG B, LE G T, STÄRKEL C, SCHÄFER W. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics and Biology, 2011,48(3):217-224.
|
[38] |
ZHANG H, GUO J, VOEGELE R T, ZHANG J, DUAN Y, LUO H, KANG Z. Functional characterization of calcineurin homologs pscna1/pscnb1 in Puccinia striiformis f sp tritici using a host-induced RNAi system. PLoS ONE, 2012,7(11):e49262.
|
[39] |
DUYVESTEIJN R G E, WIJK R V, BOER Y, REP M, HARING M A. Frp1 is a Fusarium oxysporum f-box protein required for pathogenicity on tomato. Molecular Microbiology, 2005,57(4):1051-1063.
|
[40] |
LAMOTH F, JUVVADI P R, FORTWENDEL J R, STEINBACH W J. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryotic Cell, 2012,11(11):1324-1332.
|
[41] |
ZHAO P B, REN A Z, XU H J, LI D C. The gene fpk1, encoding a camp-dependent protein kinase catalytic subunit homolog, is required for hyphal growth, spore germination, and plant infection in Fusarium verticillioides. Journal of Microbiology & Biotechnology, 2010,20(1):208.
|
[42] |
WORIEDH M, HAUBER I, MARTINEZ-ROCHA A L, VOIGT C, MAIER F J, SCHRÖDER M, MEIER C, HAUBER J, SCHÄFER W. Preventing fusarium head blight of wheat and cob rot of maize by inhibition of fungal deoxyhypusine synthase. Molecular Plant-Microbe Interactions, 2011,24(5):619-627.
|
[43] |
CHEN J, DING J, LI H, LI Z, SUN X, LI J, WANG R, DAI X, DONG H, SONG W, CHEN W, XIA Z, WU J. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Molecular Breeding, 2012,30(4):1649-1656.
|
[44] |
MU C, GAO J, ZHOU Z, WANG Z, SUN X, ZHANG X, DONG H, HAN Y, LI X, WU Y, SONG Y, MA P, DONG C, CHEN J, WU J. Genetic analysis of cob resistance to F. verticillioides: Another step towards the protection of maize from ear rot. Theoretical and Applied Genetics, 2019,132(4):1049-1059.
|
[45] |
DOLORES B R, FERNANDO C G, CARLOS L G A, VICTOR H A R, JOSE L C S. Responses of maize landrace seedlings to inoculations of Fusarium spp. Open Access Library Journal, 2017,4(6):1-14.
|
[46] |
JU M, ZHOU Z, MU C, ZHANG X, GAO J, LIANG Y, CHEN J, WU Y, LI X, WANG S, WEN J, YANG L, WU J. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Scientific Reports, 2017,7:46446.
|