[1] |
司升云, 周利琳, 王少丽, 江幸福, 许再福, 慕卫, 王冬生, 王小平, 陈浩涛, 杨亦桦, 吉训聪. 甜菜夜蛾防控技术研究与示范——公益性行业(农业)科研专项“甜菜夜蛾防控技术研究与示范”研究进展. 应用昆虫学报, 2012, 49(6): 1432-1438.
|
|
SI S Y, ZHOU L L, WANG S L, JIANG X F, XU Z F, MU W, WANG D S, WANG X P, CHEN H T, YANG Y H, JI X C. Progress in research on prevention and control of beet armyworm, Spodoptera exigua in China. Chinese Journal of Applied Entomology, 2012, 49(6): 1432-1438. (in Chinese)
|
[2] |
MAYHEW P J. Why are there so many insect species? Perspectives from fossils and phylogenies. Biological Reviews of the Cambridge Philosophical Society, 2007, 82(3): 425-454.
doi: 10.1111/brv.2007.82.issue-3
|
[3] |
KIMBRELL D A, BEUTLER B. The evolution and genetics of innate immunity. Nature Reviews. Genetics, 2001, 2:256-267.
doi: 10.1038/35066006
|
[4] |
CHOE K M, LEE H, ANDERSON K V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(4): 1122-1126.
|
[5] |
宁媛媛, 尤民生, 王成树. 昆虫免疫识别与病原物免疫逃避机理研究进展. 昆虫学报, 2009, 52(5): 567-575.
|
|
NING Y Y, YOU M S, WANG C S. Advances in the mechanisms of insect immune recognition and pathogen immune escape. Acta Entomologica Sinica, 2009, 52(5): 567-575. (in Chinese)
|
[6] |
张磊. 家蚕体内活性氧代谢及相关基因表达调控[D]. 杨凌: 西北农林科技大学, 2015.
|
|
ZHANG L. Reactive oxygen species metabolism and regulation of related genes in the silkworm, Bombyx mori[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
|
[7] |
SHIN S C, KIM S H, YOU H, KIM B, KIM A C, LEE K A, YOON J H, RYU J H, LEE W J. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 2011, 334(6056): 670-674.
doi: 10.1126/science.1212782
|
[8] |
SHARON G, SEGAL D, RINGO J M, HEFETZ A, ZILBER- ROSENBERG I, ROSENBERG E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 20051-20056.
|
[9] |
HA E M, OH C T, BAE Y S, LEE W J. A direct role for dual oxidase in Drosophila gut immunity. Science, 2005, 310(5749): 847-850.
doi: 10.1126/science.1117311
|
[10] |
RYU J H, HA E M, LEE W J. Innate immunity and gut-microbe mutualism in Drosophila. Developmental and Comparative Immunology, 2010, 34(4): 369-376.
doi: 10.1016/j.dci.2009.11.010
|
[11] |
EL HASSANI R A, BENFARES N, CAILLOU B, TALBOT M, SABOURIN J C, BELOTTE V, MORAND S, GNIDEHOU S, AGNANDJI D, OHAYON R, et al. Dual oxidase2 is expressed all along the digestive tract. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2005, 288(5): G933-G942.
doi: 10.1152/ajpgi.00198.2004
|
[12] |
HA E M, OH C T, RYU J H, BAE Y S, KANG S W, JANG I H, BREY P T, LEE W J. An antioxidant system required for host protection against gut infection in Drosophila. Developmental Cell, 2005, 8(1): 125-132.
doi: 10.1016/j.devcel.2004.11.007
|
[13] |
HA E M, LEE K A, PARK S H, KIM S H, NAM H J, LEE H Y, KANG D, LEE W J. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Developmental Cell, 2009, 16(3): 386-397.
doi: 10.1016/j.devcel.2008.12.015
|
[14] |
GEISZT M, LETO T L. The Nox family of NAD(P)H oxidases: Host defense and beyond. Journal of Biological Chemistry, 2004, 279(50): 51715-51718.
doi: 10.1074/jbc.R400024200
|
[15] |
BAE Y S, CHOI M K, LEE W J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends in Immunology, 2010, 31(7): 278-287.
doi: 10.1016/j.it.2010.05.003
|
[16] |
YAO Z, WANG A, LI Y, CAI Z, LEMAITRE B, ZHANG H. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. The ISME Journal, 2016, 10(5): 1037-1050.
doi: 10.1038/ismej.2015.202
|
[17] |
马振刚, 汪燕, 李春峰, 潘国庆, 周泽扬. 家蚕双重氧化酶BmDUOX的序列特征、表达模式及病原诱导表达. 昆虫学报, 2017, 60(11): 1255-1265.
|
|
MA Z G, WANG Y, LI C F, PAN G Q, ZHOU Z Y. Sequence characteristics, expression pattern and pathogen induced expression of BmDUOX from the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Acta Entomologica Sinica, 2017, 60(11): 1255-1265. (in Chinese)
|
[18] |
WEI G, LAI Y, WANG G, CHEN H, LI F, WANG S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23): 5994-5999.
|
[19] |
LIN J, YU X Q, WANG Q, TAO X, LI J, ZHANG S, XIA X, YOU M. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth. Plutella xylostella. Developmental and Comparative Immunology, 2020, 107:103661.
doi: 10.1016/j.dci.2020.103661
|
[20] |
LEE K A, KIM S H, KIM E K, HA E M, YOU H, KIM B, KIM M J, KWON Y, RYU J H, LEE W J. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell, 2013, 153(4): 797-811.
doi: 10.1016/j.cell.2013.04.009
|
[21] |
XIAO X, YANG L, PANG X, ZHANG R, ZHU Y, WANG P, GAO G, CHENG G. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nature Microbiology, 2017, 2:17020.
doi: 10.1038/nmicrobiol.2017.20
|
[22] |
NIETHAMMER P, GRABHER C, LOOK A T, MITCHISON T J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 2009, 459(7249): 996-999.
doi: 10.1038/nature08119
|
[23] |
BRODERICK N A, RAFFA K F, HANDELSMAN J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15196-15199.
|
[24] |
RAYMOND B, JOHNSTON P R, WRIGHT D J, ELLIS R J, CRICKMORE N, BONSALL M B. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental Microbiology, 2009, 11(10): 2556-2563.
doi: 10.1111/emi.2009.11.issue-10
|
[25] |
OROZCO-FLORES A A, VALADEZ-LIRA J A, OPPERT B, GOMEZ-FLORES R, TAMEZ-GUERRA R, RODRÍGUEZ-PADILLA C, TAMEZ-GUERRA P. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Journal of Insect Physiology, 2017, 98:275-283.
doi: 10.1016/j.jinsphys.2017.01.020
|
[26] |
PICKETT B R, GULZAR A, FERRÉ J, WRIGHT D J. Bacillus thuringiensis Vip3Aa toxin resistance in Heliothis virescens (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2017, 83(9): e03506-16.
|
[27] |
MAHON R J, DOWNES S J, JAMES B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLoS ONE, 2012, 7(6): e39192.
doi: 10.1371/journal.pone.0039192
|
[28] |
宗召莉, 郭巍, 赵丹. 棉铃虫双重氧化酶HaDuox的序列特征和表达及病原诱导分析. 北京农学院学报, 2020, 35(4): 1-8.
|
|
ZONG Z L, GUO W, ZHAO D. Sequence characteristics, expression pattern and pathogen-induced analysis of HaDuox from Helicoverpa armigera. Journal of Beijing University of Agriculture, 2020, 35(4): 1-8. (in Chinese)
|