中国农业科学 ›› 2021, Vol. 54 ›› Issue (17): 3609-3622.doi: 10.3864/j.issn.0578-1752.2021.17.005
刘东尧(),闫振华,陈艺博,杨琴,贾绪存,李鸿萍,董朋飞,王群(
)
收稿日期:
2020-09-13
接受日期:
2020-11-10
出版日期:
2021-09-01
发布日期:
2021-09-09
通讯作者:
王群
作者简介:
刘东尧,E-mail: 基金资助:
LIU DongYao(),YAN ZhenHua,CHEN YiBo,YANG Qin,JIA XuCun,LI HongPing,DONG PengFei,WANG Qun(
)
Received:
2020-09-13
Accepted:
2020-11-10
Online:
2021-09-01
Published:
2021-09-09
Contact:
Qun WANG
摘要:
【目的】随着全球气候变化,温度升高对玉米生产系统的影响越来越复杂,而玉米抗倒性在现在和未来玉米全程机械化生产系统中的重要性尤为突出。研究全生育期温度增加对玉米茎秆生长发育及抗倒的力学特性的影响,为应对未来气候变化下玉米适应性栽培途径提供理论和实践基础。【方法】以郑单958(ZD958)和先玉335(XY335)为材料,通过智能温室控制方法,设置3个温度梯度,分别为CK、CK+2℃、CK+4℃,研究了全生育期增温对玉米茎秆生长、结构发育、抗倒力学特性和产量的影响。【结果】随着温度增加,玉米株高、穗位高、第三节间长度、穗上节间长和穗下节间长均显著高于对照,CK+2℃处理的株高、穗位高、第三节间长度、穗上节间长度和穗下节间长度比CK平均增加10.80%、37.29%、16.87%、17.11%和17.78%,CK+4℃处理则比CK分别增加20.82%、54.17%、37.11%、28.48%和35.84%。温度增加显著增加了玉米穗位系数和茎粗系数,CK+4℃处理比CK+2℃处理和CK的茎粗系数平均增加15.92%和58.99%。增温使玉米茎秆维管束数目和面积显著减少,CK+4℃、CK+2℃处理的第三节间的茎秆中央维管束数目比CK平均减少42.39%、22.59%,维管束总面积比CK分别降低40.33%、28.68%,增温对中央维管束数目和面积的影响大于边缘维管束。随温度增加,玉米茎秆抗推力、穿刺强度和破碎强度显著降低,CK+4℃和CK+2℃处理比CK平均降低50.75%和43.75%(茎秆抗推力)、25.41%和29.59%(穿刺强度)、22.41%和23.58%(破碎强度)。茎秆抗推力与株高、穗位高和地上部第三节间长呈极显著负相关,与茎粗、截面惯性矩、边缘维管束数目、面积、中心维管束数目、面积呈极显著正相关。2个品种对全生育期增温响应不同。随温度增加,热敏感型品种XY335的株高、穗位高、第三节间长度、穗位系数和茎粗系数增幅显著大于ZD958;ZD958的边缘和中心单个维管束面积减少,而XY335维管束面积呈增加趋势,且ZD958维管束数目和边缘维管束总面积的降幅小于XY335;XY335茎秆抗推力降幅显著大于ZD958,且XY335穿刺强度和破碎强度最大值出现在吐丝后25 d,之后下降,而ZD958在成熟期。ZD958穿刺强度和破碎强度与株高、穗位高、地上部第三节间长均呈显著负相关,与茎粗显著正相关,XY335穿刺强度与株高呈显著负相关,破碎强度则与其他指标相关但不显著。【结论】温度增加促进了玉米茎秆生长发育,改变了茎秆内部结构,使茎秆抗推力下降,倒伏风险显著增大,且温度越高倒伏风险越大;不同品种茎秆生长特性和倒伏能力对增温响应存在明显差异。
刘东尧,闫振华,陈艺博,杨琴,贾绪存,李鸿萍,董朋飞,王群. 增温对玉米茎秆生长发育、抗倒性和产量的影响[J]. 中国农业科学, 2021, 54(17): 3609-3622.
LIU DongYao,YAN ZhenHua,CHEN YiBo,YANG Qin,JIA XuCun,LI HongPing,DONG PengFei,WANG Qun. Effects of Elevated Temperature on Maize Stem Growth, Lodging Resistance Characters and Yield[J]. Scientia Agricultura Sinica, 2021, 54(17): 3609-3622.
表1
不同处理下株高、穗位高、节间长度和茎粗的变化"
品种 Cultivar | 处理 Treatment | 株高 Plant height (cm) | 穗位高 Ear height (cm) | 穗位系数 Ear coefficient | 穗下节间长 Stem length under ear (cm) | 穗上节间长 Stem length above ear (cm) | 第三节间长 3rd internode length (mm) | 茎粗 Stalk width (mm) | 茎粗系数 Stalk width coefficient | 截面惯性矩Moment of inertia(mm4) |
---|---|---|---|---|---|---|---|---|---|---|
ZD958 | CK | 274.33a | 100.20a | 0.37a | 94.12a | 107.52a | 115.33a | 20.16a | 5.72a | 8111.66a |
CK+2℃ | 295.67b | 139.40b | 0.47b | 111.67b | 132.77b | 149.33b | 18.72b | 7.98b | 6040.42b | |
CK+4℃ | 314.33b | 149.00b | 0.47b | 123.20c | 144.23c | 163.33c | 18.35b | 8.90c | 5575.95b | |
XY335 | CK | 294.33a | 97.60a | 0.33a | 93.60a | 149.60a | 164.67a | 23.99a | 6.86a | 16265.35a |
CK+2℃ | 335.00b | 132.20b | 0.39b | 109.43b | 165.65b | 171.67b | 18.54b | 9.26b | 5809.57b | |
CK+4℃ | 374.00c | 155.80c | 0.42b | 131.77c | 183.72c | 218.33c | 19.60b | 11.14c | 7234.58b |
表2
不同处理下茎秆维管束数目与面积变化"
品种 Cultivar | 处理 Treatment | 维管束数目 Number of vascular bundle | 单个维管束面积 Single vascular bundle area | 维管束总面积 Vascular bundle total area | |||
---|---|---|---|---|---|---|---|
边缘Edge (Number per field) | 中心Centre (Number per field) | 边缘Edge (×103μm2) | 中心Centre (×103μm2) | 边缘Edge (×105μm2) | 中心Centre (×105μm2) | ||
ZD958 | CK | 52.67a | 19.33a | 5.65a | 34.12a | 3.96a | 6.47a |
CK+2℃ | 41.33b | 17.00a | 5.50a | 25.51b | 3.30b | 4.33b | |
CK+4℃ | 38.00b | 11.33b | 2.94b | 29.01b | 2.56c | 3.19c | |
XY335 | CK | 51.33a | 39.67a | 3.29a | 15.30a | 3.67a | 5.98a |
CK+2℃ | 36.00b | 29.00b | 4.95b | 16.81a | 2.56b | 4.86b | |
CK+4℃ | 31.33b | 15.33c | 5.65c | 26.10b | 2.13c | 3.91c |
表3
不同处理下茎秆力学特性与农艺性状、维管束结构的相关性"
品种 Cultivar | 力学特性 Mechanical characteristics | 株高 Plant height | 穗位高 Ear height | 茎粗 Stalk width | 截面惯性矩 Moment of inertia | 地上部第三节间长 3rd joint length | 边缘维 管束数目 Marginal vascular bundle number | 边缘维 管束面积 Marginal vascular bundle area | 中心维 管束数目 Central vascular bundle number | 中心维 管束面积 Central vascular bundle area |
---|---|---|---|---|---|---|---|---|---|---|
ZD958 | 抗推力 Thrust resistance | -0.860** | -0.966** | 0.987** | 0.890** | -0.972** | 0.983** | 0.913** | 0.798** | 0.970** |
穿刺强度 Puncture strength | -0.478 | -0.623 | 0.706* | 0.648 | -0.706* | 0.61 | 0.618 | 0.578 | 0.622 | |
破碎强度 Crushing strength | -0.826** | -0.825** | 0.775* | 0.929* | -0.890** | 0.844** | 0.806** | 0.720* | 0.841** | |
XY335 | 抗推力 Thrust resistance | -0.939** | -0.945** | 0.938** | 0.845** | -0.939** | 0.954** | 0.959** | 0.943** | 0.963** |
穿刺强度 Puncture strength | -0.670* | -0.534 | 0.626 | 0.532 | -0.626 | 0.571 | 0.571 | 0.532 | 0.556 | |
破碎强度 Crushing strength | -0.063 | -0.227 | 0.131 | 0.200 | -0.195 | 0.252 | 0.251 | 0.233 | 0.244 |
表4
不同处理下产量及产量构成因素"
年际 Year | 品种 Cultivar | 处理 Treatment | 产量 Yield (kg·hm-2) | 穗粒数 Ear grain | 百粒重 100-grain weight (g) | 穗行数 rows per ear | 行粒数 Grain number per row | 穗长 Ear length (cm) | 穗粗 Ear diameter (mm) | 穗秃尖 Ear bald tip (cm) |
---|---|---|---|---|---|---|---|---|---|---|
2018 | ZD958 | CK | 9156.04a | 655.60a | 22.20a | 15.20a | 43.20a | 22.40a | 51.97a | 1.76a |
CK+2℃ | 5974.92b | 429.20b | 22.19a | 16.00a | 27.00b | 19.70b | 42.45b | 2.40a | ||
CK+4℃ | 4354.94c | 298.00c | 23.34a | 15.60a | 19.00c | 19.76b | 44.54b | 2.33a | ||
XY335 | CK | 9939.13a | 672.00a | 23.47a | 15.60a | 43.20a | 22.26a | 48.85a | 1.96a | |
CK+2℃ | 5561.39b | 365.60b | 24.28a | 15.60a | 23.40b | 19.23b | 40.63b | 2.79a | ||
CK+4℃ | 140.74c | 8.20c | 29.24b | 1.80b | 4.20c | 20.10b | 23.98c | 18.10b | ||
2019 | ZD958 | CK | 9296.15a | 644.40a | 22.90b | 15.60a | 41.40a | 22.56a | 52.48a | 3.14a |
CK+2℃ | 5991.43b | 361.60b | 25.69a | 14.40a | 25.20b | 18.50b | 41.18b | 3.40a | ||
CK+4℃ | 3901.46c | 291.20c | 21.24b | 16.00a | 18.20c | 18.86b | 45.93b | 3.05a | ||
XY335 | CK | 10392.73a | 695.20a | 23.79a | 16.00a | 43.60a | 23.24a | 49.45a | 1.67a | |
CK+2℃ | 5552.95b | 367.60b | 24.38a | 14.40a | 25.40b | 19.12b | 40.31b | 2.69a | ||
CK+4℃ | 202.61c | 12.60c | 25.04a | 2.00b | 6.30c | 21.50b | 24.57c | 18.80b | ||
变异来源 Source of variation | 年际 Year | NS | NS | NS | NS | NS | NS | NS | NS | |
处理 Treatment | ** | ** | NS | ** | ** | ** | ** | ** | ||
品种 Cultivar | ** | ** | ** | ** | ** | NS | ** | ** | ||
年际×处理Year×Treatment | NS | NS | * | NS | ** | NS | NS | NS | ||
年际×品种 Year×Cultivar | NS | NS | NS | NS | NS | NS | NS | NS | ||
品种×处理Cultivar×Treatment | ** | ** | * | ** | ** | NS | ** | ** | ||
年际×处理×品种Year×Treatment×Cultivar | NS | NS | NS | NS | NS | NS | NS | NS |
表5
不同处理下玉米产量与茎秆力学特性和农艺性状的相关性"
品种 Cultivar | 株高 Plant height | 穗位高 Ear height | 茎粗 Stalk width | 截面惯性矩 Moment of inertia | 地上部第三节间长 3rd joint length | 抗推力 Thrust resistance | 穿刺强度 Puncture strength | 破碎强度 Crushing strength | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
产量Yield | ZD958 | -0.928** | -0.961** | 0.946** | 0.919** | -0.960** | 0.957** | 0.578 | 0.899** | |||||||
XY335 | -0.965** | -0.984** | 0.923** | 0.766* | -0.930** | 0.965** | 0.557 | 0.238 |
[1] | 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019, 40(1): 7-16. |
CHEN Y J, WANG Q Q, XIANG Y. Analysis of corn production status, superiority and self-sufficiency in China. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(1): 7-16. (in Chinese) | |
[2] |
ZANDAlLINAS S I, MITTLER R, BALFAGON D, ARBONA V, GOMEZ-CADENAS A. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2018, 162: 2-12.
doi: 10.1111/ppl.2018.162.issue-1 |
[3] |
KAMALI B, ABBASPOUR K C, WEHRLI B, YANG H. Drought vulnerability assessment of maize in Sub-Saharan Africa: Insights from physical and social perspectives. Global and Planetary Change, 2018, 162: 266-274.
doi: 10.1016/j.gloplacha.2018.01.011 |
[4] | 李树岩, 马玮, 彭记永, 陈忠民. 大喇叭口及灌浆期倒伏对夏玉米产量损失的研究. 中国农业科学, 2015, 48(19): 3952-3964. |
LI S Y, MA W, PENG J Y, CHEN Z M. Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage. Scientia Agricultura Sinica, 2015, 48(19): 3952-3964. (in Chinese) | |
[5] | TOLLENAAR M, LEE E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 88: 161-169. |
[6] |
KHOSRAVI G R, ANDERSON I C. Growth, yield, and yield components of ethephon-treated corn. Plant Growth Regulation, 1991, 10(1): 27-36.
doi: 10.1007/BF00035128 |
[7] | 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017, 50(12): 2294-2304. |
BIAN D H, LIU M X, NIU H F, WEI Z B, DU X, CUI Y H. Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L.) in the Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2017, 50(12): 2294-2304. (in Chinese) | |
[8] | 冯波, 刘延忠, 董树亭, 高荣歧, 胡昌浩, 王空军. 高温对玉米种苗转化过程中关键水解酶活性及ATP含量的影响研究. 玉米科学, 2006, 14(6): 86-89. |
FENG B, LIU Y Z, DONG S T, GAO R Q, HU C H, WANG K J. Effect of high temperature on the key hydrolytic enzyme activity and ATP content during petroleum seed-seedling transformation. Journal of Maize Sciences, 2006, 14(6): 86-89. (in Chinese) | |
[9] | 吴小娟, 杨雯, 解如, 张晓平. 高温胁迫对玉米品种‘郑单958’幼苗生长及部分生理指标的影响. 植物资源与环境学报, 2018, 27(2): 117-119. |
WU X J, YANG W, XIE R, ZHANG X P. Effects of high temperature stress on growth and some physiological indexes of boast of Zea mays ‘Zhengdan 958’. Journal of Plant Resources and Environment, 2018, 27(2): 117-119. (in Chinese) | |
[10] |
赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.
doi: 10.3724/SP.J.1006.2014.01839 |
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01839 |
|
[11] | 孙宁宁. 玉米叶、粒对高温胁迫的响应[D]. 郑州: 河南农业大学, 2017. |
SUN N N. Responses of maize leaf and kernel to heat stress[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese) | |
[12] | 郑东泽. 气象因素对寒地玉米生长发育、产量及品质的影响[D]. 哈尔滨: 东北农业大学, 2013. |
ZHENG D Z. Effects of meteorological factors on growth, yield and quality of maize in cold regions[D]. Haerbin: Northeast Agricultural University, 2013. (in Chinese) | |
[13] |
PICKETT L K, LILJEDAHL J B, HAUGH G G, ULLSTRUP A J. Rheological properties of corn stalks subjected to transverse loading. Transactions of the American Society Agricultural Engineers, 1969, 12(3): 392-396.
doi: 10.13031/2013.38849 |
[14] | 袁志华, 李云东, 陈合顺. 玉米茎秆的力学模型及抗倒伏分析. 玉米科学, 2002, 10(3): 74-75. |
YUAN Z H, LI Y D, CHEN H S. Dynamic model and lodging resistance analysis of maize stem. Journal of Maize Sciences, 2002, 10(3): 74-75. (in Chinese) | |
[15] | 王娜, 李凤海, 王志斌, 王宏伟, 吕香玲, 周宇飞, 史振声. 不同耐密型玉米品种茎秆性状对密度的响应及与倒伏的关系. 作物杂志, 2011(3): 67-70. |
WANG N, LI F H, WANG Z B, WANG H W, LÜ X L, ZHOU Y F, SHI Z S. Response to plant density of stem characters of maize hybrids and its relationship to lodging. Crops, 2011(3): 67-70. (in Chinese) | |
[16] | 刘明, 齐华, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男. 深松方式与施氮量对玉米茎秆解剖结构及倒伏的影响. 玉米科学, 2013, 21(1): 57-63. |
LIU M, QI H, ZHANG W J, ZHANG Z P, LI X F, SONG Z W, YU J L, WU Y N. Effects of deep loosening and nitrogen application on anatomical structures of stalk and lodging in maize. Journal of Maize Science, 2013, 21(1): 57-63. (in Chinese) | |
[17] |
李波, 张吉旺, 崔海岩, 靳立斌, 董树亭, 刘鹏, 赵斌. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38(11): 2093-2099.
doi: 10.3724/SP.J.1006.2012.02093 |
LI B, ZHANG J W, CUI H Y, JIN L B, DONG S T, LIU P, ZHAO B. Effects of potassium application rate on stem lodging resistance of summer maize under high yield conditions. Acta Agronomica Sinica, 2012, 38(11): 2093-2099. (in Chinese)
doi: 10.3724/SP.J.1006.2012.02093 |
|
[18] | 陈煊. 水稻抗茎倒伏的力学评价方法及抗倒因子的研究[D]. 扬州: 扬州大学, 2014. |
CHEN X. A method for the assessment of stem loding resistance in rice[D]. Yangzhou: Yangzhou University, 2014. (in Chinese) | |
[19] |
勾玲, 赵明, 黄建军, 张宾, 李涛, 孙锐. 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008, 34(4): 653-661.
doi: 10.3724/SP.J.1006.2008.00653 |
GOU L, ZHAO M, HUANG J J, ZHANG B, LI T, SUN R. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.). Acta Agronomica Sinica, 2008, 34(4): 653-661. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00653 |
|
[20] | 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示. 玉米科学, 2009, 17(5): 156-159. |
ZHAO J R, WANG R H. Factors promoting the steady increase of American maize production and their enlightenments for China. Journal of Maize Sciences, 2009, 17(5): 156-159. (in Chinese) | |
[21] |
YORDANOVA R Y, POPOVA L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiologiae Plantarum, 2007, 29(6): 535-541.
doi: 10.1007/s11738-007-0064-z |
[22] | 任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 刘鹏, 赵斌. 大田淹水对高产夏玉米抗倒伏性能的影响. 中国农业科学, 2013, 46(12): 2440-2448. |
REN B C, ZHANG J W, LI X, FAN X, DONG S T, LIU P, ZHAO B. Effects of waterlogging on stem lodging resistance of summer maize under field conditions. Scientia Agricultura Sinica, 2013, 46(12): 2440-2448. (in Chinese) | |
[23] | 李潮海, 栾丽敏, 尹飞, 王群, 赵亚丽. 弱光胁迫对不同基因型玉米生长发育和产量的影响. 生态学报, 2005, 25(4): 824-830. |
LI C H, LUAN L M, YIN F, WANG Q, ZHAO Y L. Effects of light stress at different stages on the growth and yield of different maize genotypes. Acta Ecologica Sinica, 2005, 25(4): 824-830. (in Chinese) | |
[24] | 刘仲发, 勾玲, 赵明, 张保军. 遮荫对玉米茎秆形态特征、穿刺强度及抗倒伏能力的影响. 华北农学报, 2011, 26(4): 91-96. |
LIU Z F, GOU L, ZHAO M, ZHANG B J. Effects of shading on stalk morphological characteristics, rind penetration strength and lodging-resistance of maize. Acta Agriculture Boreali-Sinica, 2011, 26(4): 91-96. (in Chinese) | |
[25] | 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33(10): 1688-1695. |
GOU L, HUANG J J, ZHANG B, LI T, SUN R, ZHAO M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agronomica Sinica, 2007, 33(10): 1688-1695. (in Chinese) | |
[26] | 李宾, 于宁宁, 王洪明, 任佰朝, 杨今胜, 张吉旺. 割苗对夏玉米生长发育、产量及抗倒伏性能的影响. 山东农业科学, 2019, 51(6): 55-61. |
LI B, YU N N, WANG H M, REN B C, YANG J S, ZHANG J W. Effects of cutting seedlings on growth, yield and lodging resistance of summer maize. Shandong Agricultural Sciences, 2019, 51(6): 55-61. (in Chinese) | |
[27] | 王彦坡, 李昂, 杨豫龙, 孟恩, 潘利文, 朱暖暖, 刘天学. 割苗对河南省夏玉米生长及产量的影响. 河南农业科学, 2019, 48(4): 28-32. |
WANG Y P, LI A, YANG Y L, MENG E, PAN L W, ZHU N N, LIU T X. Effects of cutting seedlings on growth and yield of summer maize in Henan province. Journal of Henan Agricultural Sciences, 2019, 48(4): 28-32. (in Chinese) | |
[28] |
RAFTERY A E, ZIMMER A, FRIERSON D M, STARTZ R, LIU P. Less than 2℃ warming by 2100 unlikely. Nature Climate Change, 2017, 7: 637-641.
doi: 10.1038/nclimate3352 |
[29] |
ROGELJ J, POPP A, CALVIN K V, LUDERER G, EMMERLING J, GERNAAT D, KREY V. Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Climate Change, 2018, 8(4): 325-332.
doi: 10.1038/s41558-018-0091-3 |
[30] |
CAMPBELL C, ATKINSON L, ZARAGOZA-CASTELLS J, LUNDMARK M, ATKIN O, HURRY V. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 2007, 176: 375-389.
doi: 10.1111/nph.2007.176.issue-2 |
[31] |
TAO F L, ZHANG Z. Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options. European Journal of Agronomy, 2010, 33: 103-116.
doi: 10.1016/j.eja.2010.04.002 |
[32] | MASSON-DELMOTTE V, ZHAI P, PORTNER H O, ROBERTS D, SKEA J, SHUKLA P R. Special Report on Global Warming of 1.5℃. UK: Cambridge University Press, 2018. |
[33] | United Nations Framework Convention on Climate Change. Paris Climate Change Conference (Paris, UNFCCC).(2016-01-29)[2020-06-25]. https://unfccc.int/documents/9097. |
[34] | 徐田军, 吕天放, 陈传永, 刘月娥, 张译天, 刘秀芝, 赵久然, 王荣焕. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019, 52(4): 629-638. |
XU T J, LÜ T F, CHEN C Y, LIU Y E, ZHANG Y T, LIU X Z, ZHAO J R, WANG R H. Effects of plant density and plant growth regulator on stalk traits of maize and their regulation. Scientia Agricultura Sinica, 2019, 52(4): 629-638. (in Chinese) | |
[35] | 裴志超, 兰宏亮, 徐田军, 陈传永, 董志强. 膦酸胆碱合剂对东北地区春玉米茎秆形态与质量性状的影响. 玉米科学, 2011, 19(4): 59-64. |
PEI Z C, LAN H L, XU T J, CHEN C Y, DONG Z Q. Effect of ECK treatment on the stalk characters of spring maize in the Northeast China. Journal of Maize Sciences, 2011, 19(4): 59-64. (in Chinese) | |
[36] | 崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45(17): 3497-3505. |
CUI H Y, JIN L B, LI B, ZHANG J W, ZHAO B, DONG S T, LIU P. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Scientia Agricultura Sinica, 2012, 45(17): 3497-3505. (in Chinese) | |
[37] | 刘文彬, 冯乃杰, 张盼盼, 李东, 张洪鹏, 何天明, 赵晶晶, 徐延辉, 王畅. 乙烯利和激动素对玉米茎秆抗倒伏和产量的影响. 中国生态农业学报, 2017, 25(9): 1326-1334. |
LIU W B, FENG N J, ZHANG P P, LI D, ZHANG H P, HE T M, ZHAO J J, XU Y H, WANG C. Effects of ethephon and kinetin on lodging-resistance and yield of maize. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1326-1334. (in Chinese) | |
[38] | 靳英杰, 李鸿萍, 安盼盼, 程思贤, 赵向阳, 余天雨, 李潮海. 玉米抗倒性研究进展. 玉米科学, 2019, 27(2): 94-98, 105. |
JIN Y J, LI H P, AN P P, CHENG S X, ZHAO X Y, YU T Y, LI C H. Research progress on the lodging resistance of maize. Journal of Maize Science, 2019, 27(2): 94-98, 105. (in Chinese) | |
[39] | 刘鑫, 谢瑞芝, 牛兴奎, 修文雯, 李少昆, 高世菊, 张凤路. 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响. 作物杂志, 2012(5): 126-130. |
LIU X, XIE R Z, NIU X K, XIU W W, LI S K, GAO S J, ZHANG F L. Effects of planting density on lodging resistance performance of maize varieties of different eras in North-East China. Crops, 2012(5): 126-130. (in Chinese) | |
[40] | 丁山, 张兆玉, 杨锦忠, 姜林平, 韩伟, 桑素平. 玉米茎秆力学性状的边际效应研究. 山东农业科学, 2018, 50(11): 37-42. |
DING S, ZHANG Z Y, YANG J Z, JIANG L P, HAN W, SANG S P. Study on marginal effect of edge properties of maize stalk. Shandong Agricultural Sciences, 2018, 50(11): 37-42. (in Chinese) |
[1] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[8] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[9] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[10] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[11] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[12] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[13] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[14] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[15] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
|