中国农业科学 ›› 2021, Vol. 54 ›› Issue (11): 2261-2272.doi: 10.3864/j.issn.0578-1752.2021.11.002
收稿日期:
2020-07-23
接受日期:
2020-12-25
出版日期:
2021-06-01
发布日期:
2021-06-09
通讯作者:
赵久然
作者简介:
王夏青,E-mail:基金资助:
WANG XiaQing(),SONG Wei(
),ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan(
)
Received:
2020-07-23
Accepted:
2020-12-25
Online:
2021-06-01
Published:
2021-06-09
Contact:
JiuRan ZHAO
摘要:
茎秆倒伏严重影响玉米产量、品质和机械化收获,是当前玉米生产和育种亟待解决的主要问题之一。加强对玉米茎秆抗倒伏性的研究,对提高品种抗倒伏能力具有重要意义。本文综述了玉米茎秆倒伏的主要影响因素及其遗传特征。茎秆倒伏与茎秆自身的强度密切相关。茎秆强度越高,抗倒伏性越强。茎秆强度受茎秆所处的发育阶段、茎秆内部结构和外部形态,及其细胞壁成分等影响。处于分生组织的茎秆细胞分裂旺盛,较易折断,而进入生殖生长后,茎秆表皮、厚壁组织增厚,维管束发育成熟,对茎秆的支撑作用增强。茎秆细胞壁的主要成分——纤维素、半纤维素、木质素、可溶性糖、无机物等均可提升茎秆强度。目前,研究者借助高通量表型平台,利用玉米连锁群体和自交系群体,采用各种定位方法,鉴定到一系列影响茎秆形态、强度、细胞壁成分的相关QTL和候选基因。研究表明,基于单倍型的QTL定位方法比基于单个SNP的定位效果好。一致性QTL分析将不同遗传群体的研究整合到一起,能够提高QTL结果的通用性。茎秆强度的遗传基础复杂,受微效多基因控制,位点间具有加性效应。茎秆成分QTL中的候选基因涉及细胞壁代谢、转录因子、蛋白激酶等。MAIZEWALL是玉米细胞壁相关基因的重要数据库。目前该数据库包含1 156个玉米细胞壁生物学相关的候选基因,为该领域的深入研究提供强大的资源。已鉴定到一系列影响玉米茎秆细胞壁成分、茎秆形态和强度的基因,其功能涉及纤维素合成路径,如纤维素合成酶类、Cobra类、糖基转移酶和核糖转运蛋白类;苯丙烷路径基因,如控制bm1—bm5的相关基因;植物激素类,如赤霉素、生长素、油菜素甾醇相关基因;转录因子如NAC、MYB;miRNA(ZmmiR528)以及F-box基因(stiff1)等。今后应积极探索不同发育时期玉米茎秆倒伏的力学机制;广泛发展自然群体或育种群体进行遗传分析;采取多种定位策略,提高抗倒伏相关基因鉴定的功效;针对优良等位基因,开发各类分子标记,加强抗倒伏分子标记辅助选择。本文将为玉米茎秆抗倒伏遗传机制解析及抗倒伏玉米品种的分子育种提供参考。
王夏青,宋伟,张如养,陈怡凝,孙轩,赵久然. 玉米茎秆抗倒伏遗传的研究进展[J]. 中国农业科学, 2021, 54(11): 2261-2272.
WANG XiaQing,SONG Wei,ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan. Genetic Research Advances on Maize Stalk Lodging Resistance[J]. Scientia Agricultura Sinica, 2021, 54(11): 2261-2272.
表1
玉米茎秆抗倒伏相关性状遗传定位统计"
序号 Order | 性状 Trait | 材料 Material | 定位方法 Mapping method | 主要结果 Main result | 文献 Reference |
---|---|---|---|---|---|
1 | 茎秆弯曲强度 Stalk bending strength | 216个RIL家系(B73×Ce03005) 216 RILs (B73×Ce03005) | 复合区间作图 CIM | 微效多基因遗传特征 Polygenic with minor effect inheritance | [ |
2 | 茎皮穿刺强度 Rind penetrometer strength | 4692个NAM家系,及 196个IBM的RIL家系 4692 NAM, 196 IBM RILs | 连锁分析、关联分析 Linkage analysis, GWAS | 鉴定到与苯丙烷和纤维素合成相关的位点 QTLs were related to the synthesis of phenylpropane and cellulose | [ |
3 | 茎皮穿刺强度 Rind penetrometer strength | RIL家系(H127R× Chang7- 2)、(B73×By804) RILs (H127R× Chang7-2), (B73×By804) | 复合区间作图 CIM | 候选基因与细胞壁组分相关 Candidate genes were related to cell wall components | [ |
4 | 茎粗、茎秆弯曲强度、茎皮穿刺强度 Stalk diameter, stalk bending strength, rind penetrometer strength | 257个自交系 257 inbred lines | 多位点关联分析 Multi-locus association analysis | 茎秆强度的改良可通过多个优良基因聚合实现 The improvement of stalk strength can be achieved through the accumulation of multiple favorable alleles | [ |
5 | 茎秆弯曲强度、茎皮穿刺强度 Stalk bending strength, rind penetrometer strength | 189个RIL家系 (B73×Ki11) 189 RILs (B73×Ki11) | 复合区间作图、关联 分析 CIM, GWAS | 鉴定到一个控制茎秆强度的基因stiff1 stiff1 dominates stalk strength | [ |
6 | 茎秆柔韧度 Stalk flexibility | 313个F2:3家系(J724×J724A1) 313 F2:3 (J724×J724A1) | 混合群体分离分析 BSA | 定位到1个控制茎秆柔韧度的QTL位点 One QTL was identified to control stalk flexibility | [ |
7 | 纤维素、半纤维、木质素 Cellulose, hemicellulose, lignin | 368个自交系 368 inbred lines | 关联分析 GWAS | 候选基因涉及细胞壁代谢、转录因子、蛋白激酶 Candidate genes involve cell wall metabolism, transcription factors, protein kinases | [ |
8 | 酸性洗涤纤维、中性洗涤纤维 Acid detergent fiber, neutral detergent fiber | 368个自交系 368 inbred lines | 关联分析 GWAS | 鉴定了ZmC3H2,提出56个候选基因 ZmC3H2 and 56 candidate genes were identified | [ |
9 | 6个细胞壁成分 6 cell wall components | 188个RIL家系 (B73 ×By804) 188 RILs (B73×By804) | 完备区间作图 ICIM | 一半以上的QTL表型变异解释率超过10% More than half of the QTLs explained more than 10% phenotypic variation | [ |
10 | 木质素、葡萄糖和木糖 Lignin, glucose and xylose | 263个IBM家系,以及 282个自交系 263 IBM, 282 inbred lines | 连锁分析、关联分析 Linkage analysis, GWAS | 鉴定到11个与木质素和含糖量有关的QTL 11 QTLs were related to lignin and sugar content | [ |
11 | 木质素及其单体含量 Lignin and its monomer content | 242个RIL家系(F838×F286) 242 RILs (F838×F286) | 复合区间作图 CIM | 定位了80个QTL,包含7个热点区 80 QTLs were mapped, including 7 hot spots | [ |
12 | 细胞壁成分 Cell wall components | 11个群体 11 populations | 一致性QTL分析 Meta-QTL analysis | 鉴定到与细胞壁组成、秸秆消化率相关的QTL QTLs related to cell wall composition and straw digestibility were identified | [ |
13 | 糖分含量 Stalk sugar content | 202个RIL家系(YXD053×Y6-1) 202 RILs (YXD053×Y6-1) | 复合区间作图 CIM | QTL之间有较强的上位性 QTLs with strong epistasis effect | [ |
14 | 株高与穗位高比例 Ratio of ear height to plant height | 183个热带玉米自交系 183 tropical maize inbred lines | 单倍型关联分析 Haplotype GWAS | 单倍型关联分析更适用于倒伏性状的定位 Haplotype GWAS was more efficient for the mapping of lodging-related traits | [ |
15 | 茎粗 Stalk diameter | 17个群体 17 populations | 一致性QTL分析 Meta-QTL analysis | 20个茎粗的Meta-QTLs 20 Meta-QTLs were related to stalk diameter | [ |
16 | 玉米最上节茎秆的维管束数目 Vascular bundle number at the uppermost internode of maize stalk | 866个BC2S3,HIF材料 866 BC2S3, HIF | 多QTL模型 Multiple QTL mapping | 维管束数目受大量微效的QTL控制 Vascular bundle number was dominated by many small-effect QTLs | [ |
17 | 茎皮厚度、维管束数目、密度、茎粗 Rind thickness, vascular bundle number and density, stalk diameter | 942个玉米自交系 942 inbred lines | 关联分析 GWAS | 鉴定到3个控制维管束密度的QTL位点 Three loci were associated with vascular bundle density | [ |
18 | 30个维管束性状 30 vascular traits | 480个玉米自交系 480 inbred lines | 多位点关联分析 Multi-locus association analysis | 鉴定到84个维管束表型候选基因 84 candidate genes were related to vascular bundle phenotype | [ |
[1] | 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018,51(10):1845-1854. |
XUE J, WANG K R, XIE R Z, GOU L, ZHANG W F, MING B, HOU P, LI S K. Research progress of maize lodging during late stage. Scientia Agricultura Sinica, 2018,51(10):1845-1854. (in Chinese) | |
[2] | 马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012,2:10-15. |
MA Y H, WANG Q X. Research progress on the relationship between corn stalk traits and lodging resistance. Crops, 2012,2:10-15. (in Chinese) | |
[3] | 丰光, 黄长玲, 邢锦丰. 玉米抗倒伏的研究进展. 作物杂志, 2008,4:12-14. |
FENG G, HUANG C L, XING J F. The research advances on maize lodging resistance. Crops, 2008,4:12-14. (in Chinese) | |
[4] | 孙世贤, 顾慰连, 戴俊英. 密度对玉米倒伏及其产量的影响. 沈阳农业大学学报, 1989,20:413-416. |
SUN S X, GU W L, DAI J Y. Effect of density on corn lodging and yield. Journal of Shenyang Agricultural University, 1989,20:413-416. (in Chinese) | |
[5] | 王恒亮, 吴仁海, 朱昆, 张永超, 张玉聚, 孙建伟. 玉米倒伏成因与控制措施研究进展. 河南农业科学, 2011,40(10):1-5. |
WANG H L, WU R H, ZHU K, ZHANG Y C, ZHANG Y J, SUN J W. Reviews of causes and control of maize lodging. Journal of Henan Agricultural Sciences, 2011,40(10):1-5. (in Chinese) | |
[6] | 汪黎明, 姚国旗, 穆春华, 李建生, 戴景瑞. 玉米抗倒性的遗传研究进展. 玉米科学, 2011,19(4):1-4. |
WANG L M, YAO G Q, MU C H, LI J S, DAI J R. Advances in genetic research of maize lodging resistance. Journal of Maize Sciences, 2011,19(4):1-4. (in Chinese) | |
[7] | 靳英杰, 李鸿萍, 安盼盼, 程思贤, 赵向阳, 余天雨, 李潮海. 玉米抗倒性研究进展. 玉米科学, 2019,27(2):94-98. |
JIN Y J, LI H P, AN P P, CHENG S X, ZHAO X Y, YU T Y, LI C H. Research progress on the lodging resistance of maize. Journal of Maize Sciences, 2019,27(2):94-98. (in Chinese) | |
[8] |
勾玲, 赵明, 黄建军, 张宾, 李涛, 孙锐. 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008,34(4):653-661.
doi: 10.3724/SP.J.1006.2008.00653 |
GOU L, ZHAO M, HUANG J J, ZHANG B, LI T, SUN R. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.). Acta Agronomica Sinica, 2008,34(4):653-661. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00653 |
|
[9] |
WANG X, ZHANG R, SHI Z, ZHANG Y, SUN X, JI Y L, ZHAO Y, WANG J, ZHANG Y, XING J, WANG Y, WANG R, SONG W, ZHAO J. Multi-omics analysis of the development and fracture resistance for maize internode. Scientific Reports, 2019,9(1):8183.
doi: 10.1038/s41598-019-44690-6 |
[10] |
HU H X, LIU W X, FU Z Y, HOMANN L, TECHNOW F, WANG H W, SONG C L, LI S T, MELCHINGER A E, CHEN S J. QTL mapping of stalk bending strength in a recombinant inbred line maize population. Theoretical and Applied Genetics, 2013,126(9):2257-2266.
doi: 10.1007/s00122-013-2132-7 |
[11] |
PEIFFER J A, FLINT-GARCIA S A, DE LEON N, MCMULLEN M D, KAEPPLER S M, BUCKLER E S. The genetic architecture of maize stalk strength. PLoS ONE, 2013,8(6):e67066.
doi: 10.1371/journal.pone.0067066 |
[12] |
LI K, YAN J, LI J, YANG X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biology, 2014,14(1):152.
doi: 10.1186/1471-2229-14-152 |
[13] |
ZHANG Y, LIU P, ZHANG X, ZHENG Q, CHEN M, GE F, LI Z, SUN W, GUAN Z, LIANG T. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance- related traits in maize. Frontiers in Plant Science, 2018,9:611.
doi: 10.3389/fpls.2018.00611 |
[14] |
WANG X, SHI Z, ZHANG R, SUN X, WANG J, WANG S, ZHANG Y, ZHAO Y, SU A, LI C, WANG R, ZHANG Y, WANG S, WANG Y, SONG W, ZHAO J. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biology, 2020,20(1):515.
doi: 10.1186/s12870-020-02728-2 |
[15] |
KENDE H, VAN DER KNAAP E, CHO H T. Deepwater rice: A model plant to study stem elongation. Plant Physiology, 1998,118(4):1105-1110.
doi: 10.1104/pp.118.4.1105 |
[16] | SCOBBIE L, RUSSELL W, PROVAN G J, CHESSON A. The newly extended maize internode: A model for the study of secondary cell wall formation and consequences for digestibility. Journal of the Science of Food & Agriculture, 1993,61(2):217-225. |
[17] |
ZHANG Q, CHEETAMUN R, DHUGGA K S, RAFALSKI J A, TINGEY S V, SHIRLEY N J, TAYLOR J, HAYES K R, BEATTY M, BACIC A. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 2014,14(1):27.
doi: 10.1186/1471-2229-14-27 |
[18] |
MCKIM S M. How plants grow up. Journal of Integrative Plant Biology, 2019,61(3):257-277.
doi: 10.1111/jipb.v61.3 |
[19] |
KONG E, LIU D, GUO X, YANG W, SUN J, LIN X, ZHAN K, CUI D, LIN J, ZHANG A. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 2013,1(1):43-49.
doi: 10.1016/j.cj.2013.07.012 |
[20] | 王庭杰, 张亮, 韩琼, 郑凤霞, 王天琪, 冯娜娜, 王太霞. 玉米茎秆细胞壁和组织构建对抗压强度的影响. 植物科学学报, 2015,33(1):109-115. |
WANG T J, ZHANG L, HAN Q, ZHENG F X, WANG T Q, FENG N N, WANG T X. Effects of stalk cell wall and tissue on the compressive strength of maize. Plant Science Journal, 2015,33(1):109-115. (in Chinese) | |
[21] |
SINDHU A, LANGEWISCH T, OLEK A, MULTANI D S, MCCANN M C, VERMERRIS W, CARPITA N C, JOHAL G. Maize brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiology, 2007,145(4):1444-1459.
doi: 10.1104/pp.107.102582 |
[22] |
JIAO S, HAZEBROEK J P, CHAMBERLIN M A, PERKINS M, SANDHU A S, GUPTA R, SIMCOX K D, YINGHONG L, PRALL A, HEETLAND L, MEELEY R B, MULTANI D S. Chitinase-like1 plays a role in stalk tensile strength in maize. Plant Physiology, 2019,181(3):1127-1147.
doi: 10.1104/pp.19.00615 |
[23] | 曹庆军, 崔金虎, 王洪预, 温海娇, 高亚男, 罗利红, 韩海飞. 玉米拔节后不同水分处理对植株性状和水分利用效率的影响. 玉米科学, 2011,19(3):105-109. |
CAO Q J, CUI J H, WANG H Y, WEN H J, GAO Y N, LUO L H, HAN H F. Effect of water treatments after jointing stage on plant characters and water use efficiency of maize. Maize Science, 2011,19(3):105-109. (in Chinese) | |
[24] | LE GALL H, PHILIPPE F, DOMON J, GILLET F, PELLOUX J, RAYON C. Cell wall metabolism in response to abiotic stress. Plants (Basel, Switzerland), 2015,4(1):112-166. |
[25] |
QIU X Y, HU S W. “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials, 2013,6(3):738-781.
doi: 10.3390/ma6030738 |
[26] |
PAULY M, GILLE S, LIU L, MANSOORI N, DE SOUZA A, SCHULTINK A, XIONG G. Hemicellulose biosynthesis. Planta, 2013,238(4):627-642.
doi: 10.1007/s00425-013-1921-1 |
[27] |
ZHONG R, RIPPERGER A, YE Z H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiology, 2000,123(1):59-70.
doi: 10.1104/pp.123.1.59 |
[28] |
杨世民, 谢力, 郑顺林, 李静, 袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响. 作物学报, 2009,35(1):93-103.
doi: 10.3724/SP.J.1006.2009.00093 |
YANG S M, XIE L, ZHENG S L, LI J, YUAN J C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agronomica Sinica, 2009,35(1):93-103. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00093 |
|
[29] | 李宁, 李建民, 翟志席, 李召虎, 段留生. 化控技术对玉米植株抗倒伏性状、农艺性状及产量的影响. 玉米科学, 2010,18(6):38-42. |
LI N, LI J M, ZHAI Z X, LI Z H, DUAN L S. Effects of chemical regulator on the lodging resistance traits, agricultural character and yield of maize. Maize Science, 2010,18(6):38-42. (in Chinese) | |
[30] |
ZHANG Z, ZHANG X, LIN Z, WANG J, LIU H, ZHOU L, ZHONG S, LI Y, ZHU C, LAI J, LI X, YU J, LIN Z. A large transposon insertion in the stiff1 promoter increases stalk strength in maize. The Plant Cell, 2020,32(1):152-165.
doi: 10.1105/tpc.19.00486 |
[31] |
LI K, WANG H, HU X, LIU Z, WU Y, HUANG C. Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS ONE, 2016,11(8):e0158906.
doi: 10.1371/journal.pone.0158906 |
[32] |
WANG H, LI K, HU X, LIU Z, WU Y, HUANG C. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biology, 2016,16(1):227.
doi: 10.1186/s12870-016-0919-9 |
[33] |
WANG Q, LI K, HU X, SHI H, LIU Z, WU Y, WANG H, HUANG C. Genetic analysis and QTL mapping of stalk cell wall components and digestibility in maize recombinant inbred lines from B73×By804. The Crop Journal, 2020,8(1):132-139.
doi: 10.1016/j.cj.2019.06.009 |
[34] |
PENNING B W, SYKES R W, BABCOCK N C, DUGARD C K, HELD M A, KLIMEK J F, SHREVE J T, FOWLER M, ZIEBELL A, DAVIS M F, DECKER S R, TURNER G B, MOSIER N S, SPRINGER N M, THIMMAPURAM J, WEIL C F, MCCANN M C, CARPITA N C. Genetic determinants for enzymatic digestion of lignocellulosic biomass are independent of those for lignin abundance in a maize recombinant inbred population. Plant Physiology, 2014,165(4):1475-1487.
doi: 10.1104/pp.114.242446 |
[35] |
BARRIÈRE Y, THOMAS J, DENOUE D. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838×F286. Plant Science, 2008,175(4):585-595.
doi: 10.1016/j.plantsci.2008.06.009 |
[36] |
TRUNTZLER M, BARRIÈRE Y, SAWKINS MC, LESPINASSE D, BETRAN J, CHARCOSSET A, MOREAU L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theoretical and Applied Genetics, 2010,121(8):1465-1482.
doi: 10.1007/s00122-010-1402-x |
[37] |
BIAN Y L, SUN D L, GU X, WANG Y G, YIN Z T, DENG D X, WANG Y Q, WU F F, LI G S. Identification of QTL for stalk sugar-related traits in a population of recombinant inbred lines of maize. Euphytica, 2014,198(1):79-89.
doi: 10.1007/s10681-014-1085-5 |
[38] |
MALDONADO C, MORA F, SCAPIM C A, COAN M. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS ONE, 2019,14(3):e0212925.
doi: 10.1371/journal.pone.0212925 |
[39] | 刘福鹏, 曲文利, 房海悦, 李莉莉, 金峰学, 吴委林. 玉米茎粗Meta-QTL及候选基因分析. 东北农业科学, 2019,44(5):30-33. |
LIU F P, QU W L, FANG H Y, LI L L, JIN F X, WU W L. Analysis of Meta- QTL and candidate genes related to stem diameter in maize. Journal of Northeast Agricultural Sciences, 2019,44(5):30-33. (in Chinese) | |
[40] |
HUANG C, CHEN Q, XU G, XU D, TIAN J, TIAN F. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 2016,58(1):81-90.
doi: 10.1111/jipb.12358 |
[41] |
MAZAHERI M, HECKWOLF M, VAILLANCOURT B, GAGE J L, BURDO B, HECKWOLF S, BARRY K, LIPZEN A, RIBEIRO C B, KONO T J Y. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019,19(1):45.
doi: 10.1186/s12870-019-1653-x |
[42] |
ZHANG Y, WANG J, DU J, ZHAO Y, LU X, WEN W, GU S, FAN J, WANG C, WU S, WANG Y, LIAO S, ZHAO C, GUO X. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnology Journal, 2021,19(1):35-50 .
doi: 10.1111/pbi.v19.1 |
[43] |
GUILLAUMIE S, SANCLEMENTE H, DESWARTE C, MARTINEZ Y, LAPIERRE C, MURIGNEUX A, BARRIERE Y, PICHON M, MAIZEWALL G D. database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiology, 2006,143(1):339-363.
doi: 10.1104/pp.106.086405 |
[44] |
PENNING B W, HUNTER CT 3RD, TAYENGWA R, EVELAND A L, DUGARD C K, OLEK A T, VERMERRIS W, KOCH K E, MCCARTY D R, DAVIS M F, THOMAS S R, MCCANN M C, CARPITA N C. Genetic resources for maize cell wall biology. Plant Physiology, 2009,151(4):1703-1728.
doi: 10.1104/pp.109.136804 |
[45] | MALEKI S S, MOHAMMADI K, JI K S. Characterization of cellulose synthesis in plant cells. Scientific World Journal, 2016,2016:8641373. |
[46] |
KOTAKE T, AOHARA T, HIRANO K, SATO A, KANEKO Y, TSUMURAYA Y, TAKATSUJI H, KAWASAKI S. Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany, 2011,62(6):2053-2062.
doi: 10.1093/jxb/erq395 |
[47] |
ZHOU Y, LI S, QIAN Q, ZENG D, ZHANG M, GUO L, LIU X, ZHANG B, DENG L, LIU X, LUO G, WANG X, LI J. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). The Plant Journal, 2009,57(3):446-462.
doi: 10.1111/tpj.2009.57.issue-3 |
[48] | ZHANG B, LIU X, QIAN Q, LIU L, DONG G, XIONG G, ZENG D, ZHOU Y. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(12):5110-5115. |
[49] |
YOON J, CHOI H, AN G. Roles of lignin biosynthesis and regulatory genes in plant development. Journal of Integrative Plant Biology, 2015,57:902-912.
doi: 10.1111/jipb.v57.11 |
[50] |
HALPIN C, HOLT K, CHOJECKI J, OLIVER D, CHABBERT B, MONTIES B, EDWARDS K, BARAKATE A, FOXON G A. Brown-midrib maize (bm1)-A mutation affecting the cinnamyl alcohol dehydrogenase gene. The Plant Journal, 1998,14(5):545-553.
doi: 10.1046/j.1365-313X.1998.00153.x |
[51] |
TANG H M, LIU S, HILLSKINNER S, WU W, REED D, YEH C T, NETTLETON D, SCHNABLE P S. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. The Plant Journal, 2014,77(3):380-392.
doi: 10.1111/tpj.2014.77.issue-3 |
[52] | VIGNOLS F, RIGAU J, TORRES M A, CAPELLADES M, PUIGDOMÈNECH P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. The Plant Cell, 1995,7(4):407-416. |
[53] |
LI L, HILL-SKINNER S, LIU S, BEUCHLE D, TANG H M, YEH C T, NETTLETON D, SCHNABLE P S. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. The Plant Journal, 2015,81(3):493-504.
doi: 10.1111/tpj.2015.81.issue-3 |
[54] |
XIONG W, WU Z, LIU Y, LI Y, SU K, BAI Z, GUO S, HU Z, ZHANG Z, BAO Y, SUN J, YANG G, FU C. Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnology for Biofuels, 2019,12:82.
doi: 10.1186/s13068-019-1421-z |
[55] | BENSEN R J, JOHAL G S, CRANE V C, TOSSBERG J T, SCHNABLE P S, MEELEY R B, BRIGGS S P. Cloning and characterization of the maize An1 gene. The Plant Cell, 1995,7(1):75-84. |
[56] | WINKLER R G, HELENTJARIS T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. The Plant Cell, 1995,7(8):1307-1317. |
[57] |
CASSANI E, BERTOLINI E, BADONE F C, LANDONI M, GAVINA D, SIRIZZOTTI A, PILU R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Molecular Breeding, 2009,24(4):375-385.
doi: 10.1007/s11032-009-9298-3 |
[58] | HARTWIG T, CHUCK G, FUJIOKA S, KLEMPIEN A, WEIZBAUER R, POTLURI D P V, CHOE S, JOHAL G S, SCHULZ B. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(49):19814-19819. |
[59] |
MAKAREVITCH I, THOMPSON A, MUEHLBAUER G J, SPRINGER N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE, 2012,7(1):e30798.
doi: 10.1371/journal.pone.0030798 |
[60] |
XING A, GAO Y, YE L, ZHANG W, CAI L, CHING A, LLACA V, JOHNSON B E, LIU L, YANG X. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015,66(13):3791-3802.
doi: 10.1093/jxb/erv182 |
[61] |
AVILA L M, CERRUDO D, SWANTON C J, LUKENS L. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016,67(5):1577-1588.
doi: 10.1093/jxb/erv554 |
[62] |
MULTANI D S, BRIGGS S P, CHAMBERLIN M A, BLAKESLEE J J, MURPHY A S, JOHAL G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302(5642):81-84.
doi: 10.1126/science.1086072 |
[63] |
ZHONG R, LEE C, ZHOU J, MCCARTHY R L, YE Z H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell, 2008,20(10):2763-2782.
doi: 10.1105/tpc.108.061325 |
[64] |
KUBO M, UDAGAWA M, NISHIKUBO N, HORIGUCHI G, YAMAGUCHI M, ITO J, MIMURA T, FUKUDA H, DEMURA T. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development, 2005,19(16):1855-1860.
doi: 10.1101/gad.1331305 |
[65] |
MITSUDA N, SEKI M, SHINOZAKI K, OHMETAKAGI M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 2005,17(11):2993-3006.
doi: 10.1105/tpc.105.036004 |
[66] |
OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005,10(2):79-87.
doi: 10.1016/j.tplants.2004.12.010 |
[67] |
XIAO W, YANG Y, YU J. ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize (Zea mays L.). Plant Science, 2018; 266:83-94.
doi: 10.1016/j.plantsci.2017.03.012 |
[68] |
SUN Q, LIU X, YANG J, LIU W, DU Q, WANG H, FU C, LI W X. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 2018,11(6):806-814.
doi: 10.1016/j.molp.2018.03.013 |
[69] |
ABD-HAMID N A, AHMAD-FAUZI M I, ZAINAL Z, ISMAIL I. Diverse and dynamic roles of F-box proteins in plant biology. Planta, 2020,251(3):68.
doi: 10.1007/s00425-020-03356-8 |
[70] |
CAVANAGH C, MORELL M, MACKAY I, POWELL W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 2008,11(2):215-221.
doi: 10.1016/j.pbi.2008.01.002 |
[71] |
LIU H, WANG X, XIAO Y, LUO J, QIAO F, YANG W, ZHANG R, MENG Y, SUN J, YAN S, PENG Y, NIU L, JIAN L, SONG W, YAN J, LI C, ZHAO Y, LIU Y, WARBURTON M, ZHAO J, YAN J. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020,21(1):20.
doi: 10.1186/s13059-020-1930-x |
[72] |
苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010,36(7):1100-1107.
doi: 10.3724/SP.J.1006.2010.01100 |
SU C F, ZHAO T J, GAI J Y. Simulation Comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agronomica Sinica, 2010,36(7):1100-1107. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01100 |
|
[73] |
冯建英, 温阳俊, 张瑾, 章元明. 植物关联分析方法的研究进展. 作物学报, 2016,42(7):945-956.
doi: 10.3724/SP.J.1006.2016.00945 |
WEN J Y, FENG Y J, ZHANG J, ZHANG Y M. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016,42(7):945-956. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00945 |
|
[74] |
LIU H, JIAN L, XU J, ZHANG Q, ZHANG M, JIN M, PENG Y, YAN J, HAN B, LIU J, GAO F, LIU X, HUANG L, WEI W, DING Y, YANG X, LI Z, ZHANG M, SUN J, BAI M, SONG W, CHEN H, SUN X, LI W, LU Y, LIU Y, ZHAO J, QIAN Y, JACKSON D, FERNIE A R, YAN J. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell, 2020,32(5):1397-1413.
doi: 10.1105/tpc.19.00934 |
[75] |
LIU X, LIU J, REN W, YANG Q, CHAI Z, CHEN R, WANG L, ZHAO J, LANG Z, WANG H, FAN Y, ZHAO J, ZHANG C. Gene-indexed mutations in maize. Molecular Plant, 2017,11(3):496-504.
doi: 10.1016/j.molp.2017.11.013 |
[76] | REN Z, ZHANG D, CAO L, ZHANG W, ZHENG H, LIU Z, HAN S, DONG Y, ZHU F, LIU H, SU H, CHEN Y, WU L, ZHU Y, KU L. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant, Cell & Environment, 2020,43(9):2272-2286. |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 李菲菲, 廉雪菲, 尹韬, 常媛媛, 金燕, 马小川, 陈岳文, 叶丽, 李云松, 卢晓鹏. 柑橘果实囊衣发育与化渣性的形成[J]. 中国农业科学, 2023, 56(2): 333-344. |
[3] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[4] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[5] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[6] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[7] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[8] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[9] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[10] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[11] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[12] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[13] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[14] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[15] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
|