中国农业科学 ›› 2021, Vol. 54 ›› Issue (11): 2249-2260.doi: 10.3864/j.issn.0578-1752.2021.11.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析

王继庆1(),任毅1,时晓磊1,王丽丽1,张新忠2,苏力坛·姑扎丽阿依1,谢磊1,耿洪伟1()   

  1. 1新疆农业大学农学院/农业生物技术重点实验室,乌鲁木齐 830052
    2新疆农业科学院粮食作物研究所,乌鲁木齐 830091
  • 收稿日期:2020-10-31 接受日期:2020-12-28 出版日期:2021-06-01 发布日期:2021-06-09
  • 通讯作者: 耿洪伟
  • 作者简介:王继庆,E-mail:WANGjiqing0655@163.com
  • 基金资助:
    国家自然科学基金(31771786);新疆维吾尔自治区科技创新基地建设项目(PT1910)

Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain

WANG JiQing1(),REN Yi1,SHI XiaoLei1,WANG LiLi1,ZHANG XinZhong2,SULITAN· GuZhaLiAYi1,XIE Lei1,GENG HongWei1()   

  1. 1College of Agriculture, Xinjiang Agricultural University/Key Laboratory of Agricultural Biological Technology, Urumqi 830052
    2Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2020-10-31 Accepted:2020-12-28 Online:2021-06-01 Published:2021-06-09
  • Contact: HongWei GENG

摘要:

【目的】小麦籽粒超氧化物歧化酶活性对小麦面粉色泽和营养品质具有重要影响,挖掘与小麦籽粒超氧化物歧化酶(superoxide dismutase,SOD)活性显著关联位点及候选基因,为揭示小麦籽粒SOD活性的遗传机理和小麦面粉色泽的遗传改良奠定基础。【方法】采用氮蓝四唑(nitro-blue tetrazolium,NBT)光化还原法对3个环境下种植的212份普通小麦品种(系)进行SOD活性检测,结合90K SNP芯片的16 705个高质量SNP标记对小麦籽粒SOD活性进行全基因组关联分析(genome-wide association study,GWAS),并对稳定遗传的显著关联位点进行候选基因的挖掘。【结果】不同环境下,各小麦品种(系)间的SOD活性表现出丰富的表型变异,变异系数为4.34%—5.23%,相关系数介于0.60—0.90(P<0.001)。多态性信息含量(polymorphic information content,PIC)为0.24—0.29。全基因组连锁不平衡(linkage disequilibrium,LD)衰减距离为7 Mb。群体结构分析表明,供试材料可分为3个亚群。GWAS分析结果显示,共检测到29个与SOD活性显著关联位点(P≤0.001),分布在1A、1B、2A、2B、2D、3B、3D、4B、4D、5A、5B、5D、6A、6B、6D和7B染色体上,单个位点可解释5.47%—32.43%的表型变异,其中14个位点在2个及以上环境下均被检测到。9个显著关联位点在3个环境下被同时检测到,分布于1B、2B、4B、5A、5B、6B和6D染色体,贡献率为6.21%—16.62%。对稳定遗传的显著关联位点进行候选基因的挖掘,共挖掘TraesCS2B01G567600TraesCS3D01G069900TraesCS3D01G070200TraesCS5B01G525700TraesCS5B01G373700TraesCS6A01G021400TraesCS6D01G431500等7个SOD基因和TraesCS5A01G263500TraesCS6B01G707800等2个与SOD活性相关的候选基因,候选基因的功能主要与抑制细胞活性氧积累及参与抗氧化剂再生过程有关。【结论】检测到与小麦籽粒SOD活性显著关联的29个SNP位点,共筛选出7个SOD基因和2个与SOD活性有关的候选基因。

关键词: 小麦籽粒, SOD活性, 全基因组关联分析, SNP, 候选基因

Abstract:

【Objective】The activity of superoxide dismutase (SOD) in wheat grains has a significant effect on the color and nutritional quality of wheat flour. Identification of associated loci and candidate genes for SOD activity in wheat grains is important for discovering the genetic mechanism of SOD activity in wheat grains and genetic improvement of wheat flour color. 【Method】The SOD activity of 212 common wheat varieties (lines) planted in 3 environments was detected by photoreduction method of nitro-blue tetrazolium (NBT), and the genome-wide association study (GWAS) of SOD activity in wheat grains was carried out by 16 705 high-quality SNP markers of 90K SNP chip, and candidate genes of significantly associated loci of stable inheritance were identified. 【Result】The phenotypic variation of SOD activity among wheat varieties (lines) was significant in different environments, with the coefficient of variation ranging from 4.34% to 5.23%, the correlation coefficient ranging from 0.60 to 0.90 (P<0.001). Polymorphic information content (PIC) ranging from 0.24 to 0.29 and the whole genome linkage disequilibrium (LD) attenuation distance of 7 Mb. The analysis of population structure showed that the tested materials could be divided into 3 subgroups. GWAS analysis showed that 29 loci (P≤0.001) were significantly associated with SOD activity, which were distributed on chromosomes 1A, 1B, 2A, 2B, 2D, 3B, 3D, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D and 7B. A single locus can explain the phenotypic variation(R2) between 5.47% and 32.43%, of which 14 loci were detected in 2 or more environments. Nine significant associated loci were detected in three environments, distributed on chromosomes 1B, 2B, 4B, 5A, 5B, 6B and 6D, with a contribution rate of 6.21%-16.62%. SOD genes of TraesCS2B01G567600, TraesCS3D01G069900, TraesCS3D01G070200, TraesCS5B01G525700, TraesCS6A01G021400 and TraesCS6D01G431500, and SOD-activity-related candidate genes of TraesCS5A01G263500 and TraesCS6B01G707800 were used to identify the candidate genes of significantly associated loci of stable inheritance. The functions of the candidate genes were mainly related to the inhibition of cell reactive oxygen species accumulation and the participation in antioxidant regeneration. 【Conclusion】Twenty-nine SNP loci associated with SOD activity in wheat grains were detected, and 7 SOD genes and 2 candidate genes related to SOD activity were screened out.

Key words: wheat grain, SOD activity, genome-wide association study, SNP, candidate genes