中国农业科学 ›› 2020, Vol. 53 ›› Issue (4): 669-682.doi: 10.3864/j.issn.0578-1752.2020.04.001
收稿日期:
2019-07-07
接受日期:
2019-08-06
出版日期:
2020-02-16
发布日期:
2020-03-09
联系方式:
孟淑君,E-mail:18237116524@163.com。|张雪海,E-mail:xuehai85@126.com。
基金资助:
ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING(),JiHua TANG(
)
Received:
2019-07-07
Accepted:
2019-08-06
Published:
2020-02-16
Online:
2020-03-09
摘要:
【目的】水稻(Oryza sativa L.)是中国最重要的粮食作物,也是盐胁迫敏感作物。研究水稻盐胁迫响应基因表达,发掘水稻耐盐基因对水稻抵御盐胁迫的分子机制及解析其调控网络,为培育耐盐水稻品种奠定基础。【方法】以水稻品种日本晴种子为试验材料,在1/2MS培养基培养条件下对其进行盐处理(150 mmol·L-1 NaCl),对盐处理和非盐处理21 d的根系进行小分子量RNA组学测序。通过生物信息学分析,以log2 Fold Change(log2FC)>1或<-1为筛选条件,寻找在盐胁迫和非盐胁迫条件下差异表达的miRNA和tRF(tRNA-derived RNA fragments),分析其靶基因,并通过实时荧光定量PCR对测序结果及靶基因进行验证。【结果】以至少一组数据RPM(Reads Per Million reads)>500和log2FC>1或<-1为筛选条件,共得到31个差异表达miRNA,其中8个为盐胁迫诱导miRNA,23个为盐胁迫抑制miRNA,这些差异表达miRNA属于12个miRNA家族,其中8个miRNA家族在拟南芥、玉米和小麦等物种中也被报道为盐胁迫信号响应miRNA,包括盐胁迫抑制的osa-miR397、osa-miR396、osa-miR156、osa-miR167、osa-miR1432和盐胁迫诱导的osa-miR159、osa-miR168、osa-miR164。其余4个miRNA家族osa-miR1882、osa-miR1876、osa-miR1423和osa-miR5077尚未见与盐胁迫相关的报道。通过靶基因预测,得到这31个差异表达miRNA的靶基因共162个。此外,盐处理后,水稻根系产生的34—38nt tRF数量显著多于非盐处理材料,说明tRF的产生并非随机,而是通过某种特定机制响应高盐信号,诱发tRNA特异性加工而产生。以RPM>50和log2FC>1或<-1为筛选条件,检测到盐胁迫诱导的5'端tRF 3个,3'端tRF 3个,这些tRF由6个tRNA加工产生。推测这些差异tRF是潜在的水稻盐胁迫响应tRF。【结论】共检测到12种水稻根系中盐胁迫响应miRNA,其靶基因多为转录因子编码基因,推测其通过对其靶基因转录因子的转录后调控参与了盐胁迫响应的表达调控。其中8个水稻盐胁迫响应miRNA家族是不同物种间保守的通用盐胁迫响应miRNA。另外,从转录组水平挖掘出水稻盐胁迫响应tRF,并鉴定了6个盐胁迫诱导表达的tRF。
孟淑君, 张雪海, 王琪月, 张稳, 黄力, 丁冬, 汤继华. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682.
ShuJun MENG, XueHai ZHANG, QiYue WANG, Wen ZHANG, Li HUANG, Dong DING, JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots[J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
表1
水稻盐胁迫相关基因qRT-PCR引物序列"
名称 Name | 引物序列 Primer sequence (5'-3') |
---|---|
osa-miR156a-F | TGACAGAAGAGAGTGAGCAC |
osa-miR167f-F | TGAAGCTGCCAGCATGATCTG |
osa-miR396e-5p-F | TCCACAGGCTTTCTTGAACTG |
EPlORYSAT000373812-F | GCGGATGTAGCCAAGTGGATCA |
EPlORYSAT000373840-F | GGATTGTAGTTCAATTGGTCAGAGC |
T156-OsSPL11-F | ACCATGCAAACACCACTTCA |
T156-OsSPL11-R | TTGGCAAGAGCTCATTTGTG |
T156-OsSPL13-F | GTGCCAGGTGGAGAGGTG |
T156-OsSPL13-R | GTCGAACTCCGTCAGCTCAT |
T167-OsARF6-F | AGCCTGAGTACCTCCAGCAA |
T167-OsARF6-R | GGTGTAGACTGAGGGGTGGA |
T167-Os06g03830-F | GATGACCTTCGCCACAAACT |
T167-Os06g03830-R | CGTCGGATCGTACGGTATCT |
T396-OsGRF2-F | GTTGTCCAAGGAGCACTGC |
T396-OsGRF2-R | GTGGGGATGGAGATGGAGAG |
Os01g0810100-F | ATTCTGGGCACTGTTTGGAG |
Os01g0810100-R | GCAACATCTTGCCATGTGAG |
Os04g0531300-F | TGCCCACAAGAAAGGGATAG |
Os04g0531300-R | GCTCCCATTCCACCACTAAG |
Osβ-Actin-F | GGAAGTACAGTGTCTGGATTGGAG |
Osβ-Actin-R | TCTTGGCTTAGCATTCTTGGGT |
表 2
水稻盐胁迫响应差异表达miRNA"
miRNA | 染色体 Chr. | 起始 Start | 终止 End | 长度 Length (bp) | 序列 Sequence (5'-3') | NP-RPM 平均值 Average of NP-RPM | NP-Na-RPM 平均值 Average of NP-Na-RPM | Log2 (NP-Na/NP) | 表达差异 Differential expression |
---|---|---|---|---|---|---|---|---|---|
osa-miR397a | 6 | 28489785 | 28489898 | 21 | UCAUUGAGUGCAGCGUUGAUG | 3385.00 | 273.09 | -3.631709 | 下调Down |
osa-miR397b | 2 | 3280781 | 3280898 | 21 | UUAUUGAGUGCAGCGUUGAUG | 14209.57 | 1461.91 | -3.280937 | 下调Down |
osa-miR1882e-3p | 10 | 10320904 | 10321044 | 24 | GAAAUGAUCUUGGACGUAAUCUAG | 3760.37 | 649.34 | -2.533830 | 下调Down |
osa-miR396f-5p | 2 | 35636546 | 35636721 | 22 | UCUCCACAGGCUUUCUUGAACU | 1173.18 | 321.53 | -1.867414 | 下调Down |
osa-miR396e-5p | 4 | 34436820 | 34437003 | 21 | UCCACAGGCUUUCUUGAACUG | 1173.18 | 321.53 | -1.867414 | 下调Down |
osa-miR156a | 1 | 22524147 | 22524246 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156b-5p | 1 | 4666341 | 4666516 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156c-5p | 1 | 4665975 | 4666123 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156d | 2 | 4512884 | 4513012 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156e | 4 | 25026327 | 25026430 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156f-5p | 8 | 21478230 | 21478415 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156g-5p | 2 | 8412516 | 8412618 | 20 | CGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156h-5p | 8 | 21491232 | 21491417 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156i | 2 | 24119995 | 24120084 | 20 | UGACAGAAGAGAGUGAGCAC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR156j-5p | 6 | 26554795 | 26554959 | 22 | GCUCGCUCCUCUUUCUGUCAGC | 2155.81 | 688.99 | -1.645684 | 下调Down |
osa-miR167d-5p | 7 | 4166404 | 4166295 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR167e-5p | 2 | 3742241 | 3742513 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR167f | 10 | 14723044 | 14723156 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR167g | 3 | 3347682 | 3347763 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR167h-5p | 12 | 25480618 | 25480737 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR167i-5p | 6 | 27674749 | 27674949 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR167j | 1 | 32686068 | 32686227 | 21 | UGAAGCUGCCAGCAUGAUCUG | 2924.08 | 1169.08 | -1.322607 | 下调Down |
osa-miR1432-5p | 7 | 23401702 | 23401810 | 21 | AUCAGGAGAGAUGACACCGAC | 485.58 | 219.53 | -1.145259 | 下调Down |
osa-miR159f | 1 | 6693112 | 6693299 | 21 | CUUGGAUUGAAGGGAGCUCUA | 874.14 | 1817.05 | 1.055665 | 上调Up |
osa-miR159a.1 | 1 | 17681923 | 17682194 | 21 | UUUGGAUUGAAGGGAGCUCUG | 15079.03 | 32657.51 | 1.114871 | 上调Up |
osa-miR159b | 1 | 1215030 | 1215217 | 21 | UUUGGAUUGAAGGGAGCUCUG | 15079.03 | 32657.51 | 1.114871 | 上调Up |
osa-miR168a-5p | 2 | 1553154 | 1553240 | 21 | UCGCUUGGUGCAGAUCGGGAC | 398.64 | 916.89 | 1.201650 | 上调Up |
osa-miR1876 | 10 | 4833365 | 4833521 | 24 | AUAAGUGGGUUUGUGGGCUGGCCC | 1462.10 | 3609.01 | 1.303566 | 上调Up |
osa-miR1423-5p | 4 | 19715117 | 19715252 | 24 | AGGCAACUACACGUUGGGCGCUCG | 265.74 | 1720.74 | 2.694957 | 上调Up |
osa-miR164e | 3 | 10542157 | 10542288 | 21 | UGGAGAAGCAGGGCACGUGAG | 75.61 | 558.04 | 2.883783 | 上调Up |
osa-miR5077 | 3 | 14094752 | 14094842 | 19 | GUUCGCGUCGGGUUCACCA | 93.53 | 856.96 | 3.195773 | 上调Up |
表3
水稻盐胁迫相关tRF的来源tRNA"
来源tRNA基因编号 Gene ID of source tRNA | 基因注释 Gene expression | 位置 Loction | 长度 Length (bp) | 序列 Sequence (5'-3') | NP-RPM 平均值 NP-RPM average value | NP-Na-RPM 平均值 NP-Na-RPM average value | Log2 (NP-Na/NP) |
---|---|---|---|---|---|---|---|
ENSRNA049444301 | 反密码子为UUC的谷氨酸 tRNA tRNA-Glu for anticodon UUC | 12:25043392..25043429 | 38 | GAAAGCCAGATAT CCTAACCGGACTA GACGACAATGGA | 54.91457551 | 79.26862858 | 0.529560894 |
ENSRNA049444701 | 反密码子为UUC的谷氨酸 tRNA tRNA-Glu for anticodon UUC | 12:2735598..2735634 | 37 | GCCATTGTCGTCTA GTCCGGTTAGGAT ACCTGGCTTT | 280.0756319 | 532.1395357 | 0.925988127 |
EPlORYSAT000373797 | 反密码子为UCC的谷氨酸 tRNA tRNA tRNA-Glu (UCC) | Pt:15650..15686 | 37 | GCCCCTATCGTCTA GTGGTTCAGGACAT CTCTCTTTC | 51.33846231 | 85.59087607 | 0.737416929 |
EPlORYSAT000373812 | 反密码子为GUG的组氨酸 tRNA tRNA-His (GUG) | Pt:81050..81087 | 38 | GGCGGATGTAGC CAAGTGGATCAAG GCAGTGGATTGTG | 27.04710805 | 62.75454797 | 1.214245673 |
EPlORYSAT000373840 | 反密码子为GUC的天门 冬氨酸 tRNA tRNA-Asp (GUC) | Pt:16231..16267 | 37 | GGGATTGTAGTTC AATTGGTCAGAGC ACCGCCCTGTC | 45.81324826 | 183.8090975 | 2.004371412 |
ENSRNA049445145 | 反密码子为CGC的丙氨酸 tRNA tRNA-Ala for anticodon CGC | 8:22194244..22194280 | 37 | GGGGACGTAGCTCATATGGTAGAGCGCTCGCTTCGCA | 3.948187725 | 64.83354259 | 4.037477913 |
ENSRNA049444418 | 反密码子为UUC的谷氨酸 tRNA tRNA-Glu for anticodon UUC | 12:27018602..27018639 | 38 | TCACCCAGACGACCCGGGTTCAAATCCCGGCAATGGAA | 8.877923176 | 86.56822355 | 3.285543425 |
ENSRNA049446755 | 反密码子为GCC的甘氨酸 tRNA tRNA-Gly for anticodon GCC | 3:25619176..25619211 | 36 | ACGGTACAGACCC GGGTTCGATTCCC GGCTGGTGCA | 5.511015306 | 72.72375321 | 3.722036619 |
EPlORYSAT000373797 | 反密码子为UCC的谷氨酸 tRNA tRNA-Glu(UCC) | Pt:15686..15722 | 37 | CAAGGAGGCAGCG GGGATTCGACTTC CCCTGGGGGTA | 24.28546159 | 47.55822306 | 0.969601905 |
EPlORYSAT000373840 | 反密码子为GUC的天门 冬氨酸 tRNA tRNA-Asp(GUC) | Pt:16267..16304 | 38 | CAAGGCGGAAGCT GCGGGTTCGAGCC CCGTCAGTCCCG | 14.74937311 | 52.34254363 | 1.827330398 |
表4
水稻盐胁迫差异表达tRF预测靶基因"
来源tRNA基因编号 Gene ID of source tRNA | 靶基因编号 Target gene ID | 位置 Location | 基因注释 Gene description |
---|---|---|---|
EPlORYSAT000373812 | Os01g0810100 | 1:34412916..34416988 | 叶绿体核糖核酸酶III蛋白 Chloroplast ribonuclease III domain protein |
Os10g0119300 | 10:1234067..1241670 | FH2结构域结合肌动蛋白 Actin-binding FH2 domain containing protein | |
Os03g0301700 | 3:10621704..10625395 | 钙调蛋白结合蛋白磷酸酶 Calmodulin-binding protein phosphatase | |
Os03g0435200 | 3:18355628..18365524 | 五肽重复蛋白 Pentatricopeptide repeat domain containing protein | |
EPlORYSAT000373840 | Os04g0531300 | 4:26565544..26571685 | tRNA -二氢吡啶合酶蛋白 tRNA-dihydrouridine synthase domain containing protein |
Os11g0593500 | 11:22604874..22606587 | 环状F-box蛋白 Cyclin-like F-box domain containing protein | |
Os06g0128200 | 6:1485977..1490634 | LMBR1膜内在蛋白 LMBR1 integral membrane protein | |
Os03g0562200 | 3:20188178..20194997 | 环状F-box蛋白 Cyclin-like F-box domain containing protein | |
Os03g0860700 | 3:36320679..36333253 | 肌球蛋白Myosin | |
Os01g0850100 | 1:36540164..36545196 | 磷脂酸类磷脂 Phosphatidic acid phosphatase-like protein | |
ENSRNA049445145 | Os08g0389300 | 8:18398361..18407618 | UbiA-异戊二烯转移酶家族蛋白 UbiA prenyltransferase family domain containing protein |
Os10g0464400 | 10:17133478..17137843 | 卤酸脱卤酶类水解酶蛋白 Haloacid dehalogenase-like hydrolase domain containing protein | |
ENSRNA049444418 | Os08g0134900 | 8:1988346..1990818 | 保守假设蛋白Conserved hypothetical protein |
Os01g0267800 | 1:9192164..9193439 | 丝氨酸/苏氨酸蛋白激酶蛋白 Serine/threonine protein kinase domain containing protein | |
Os03g0320100 | 3:11549564..11551862 | α-N-阿拉伯呋喃糖苷酶 A Alpha-N-arabinofuranosidase A | |
Os07g0484800 | 7:17787901..17801227 | 腺嘌呤磷酸核糖转移酶蛋白 Adenine phosphoribosyltransferase like protein | |
Os09g0333600 | 9:10071433..10085739 | 多效性耐药蛋白4 Pleiotropic drug resistance protein 4 | |
Os09g0529700 | 9:20744838..20748509 | 液泡蛋白分选;内吞体分选转运复合体 Vacuolar protein sorting; endocyte sorting and transport complex | |
Os02g0250700 | 2:8518506..8535685 | 表达蛋白Expressed protein | |
Os12g0256600 | 12:8809699..8811919 | 保守假设蛋白Conserved hypothetical protein | |
Os08g0226100 | 8:7698342..7699299 | 保守假设蛋白Conserved hypothetical protein | |
Os05g0400200 | 5:19470226..19475222 | 逆转录转座子蛋白Ty1亚类 Retrotransposon protein Ty1-copia subclass | |
Os05g0126200 | 5:1497942..1499638 | 保守假设蛋白Conserved hypothetical protein | |
ENSRNA049446755 | Os08g0387300 | 8:18299461..18299571 | 膜蛋白质Membrane protein |
Os03g0320100 | 3:11549564..11551862 | α-N-阿拉伯呋喃糖苷酶A Alpha-N-arabinofuranosidase A | |
Os05g0400200 | 5:19470226..19475222 | 逆转录转座子蛋白Ty1亚类 Retrotransposon protein Ty1-copia subclass | |
EPlORYSAT000373840 | Os03g0165300 | 3:3513371..3517214 | 保守假设蛋白Conserved hypothetical protein |
Os12g0274450 | 12:10072058..10075165 | 保守假设蛋白Conserved hypothetical protein | |
Os04g0271700 | 4:11375483..11377317 | 玉米素葡萄糖基转移酶UDP-glycosyltransferase |
[1] | MO J B, LI D Y, ZHANG H J . Roles of ERF transcription factors in biotic and abiotic stress response in plants. Plant Physiology Journal, 2011,47(12):1145-1154. |
[2] | MUNNS R, TESTER M . Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681. |
[3] | JONES-RHOADES M W, BARTEL D P . Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004,14(6):787-799. |
[4] | BARTEL D P . MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. |
[5] | ACHKAR N P, CAMBIAGNO D A, MANAVELLA P A . AmiRNA biogenesis: A dynamic pathway. Trends in Plant Science, 2016,21(12):1034-1044. |
[6] | JONES-RHOADES M W, BARTEL D P, BARTEL B . MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 2006,57(1):19-53. |
[7] | KHRAIWESH B, ZHU J K, ZHU J H . Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica Et Biophysica Acta, 2012,1819(2):137-148. |
[8] | GAO P, BAI X, YANG L, LV D K, PAN X, LI Y, CAI H, JI W, CHEN Q, ZHU Y M . osa-miR393: A salinity- and alkaline stress-related microRNA gene. Molecular Biology Reports, 2011,38(1):237-242. |
[9] | YANG W, FAN T, HU X Y, CHENG T H, ZHANG M Y . Overexpressing osa-miR171c decreases salt stress tolerance in rice. Journal of Plant Biology, 2017,60(5):485-492. |
[10] | SUNKAR R, ZHOU X, ZHENG Y, ZHANG W, ZHU J K . Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 2008,8(1):25-30. |
[11] | LU Y Z, FENG Z, LIU X Y, BIAN L Y, XIE H, ZHANG C L, MYSORE K S, LIANG J S . miR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC Plant Biology, 2018,18(1):261-273. |
[12] | KUMAR P, ANAYA J, MUDUNURI S B, DUTTA A . Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology, 2014,12(1):78-92. |
[13] | SOBALA A, HUTVANGER G . Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdisciplinary Reviews RNA, 2011,2(6):853-862. |
[14] | LIAO J Y, MA L M, GUO Y H, ZHANG Y C, ZHOU H, SHAO P, CHEN Y Q, QU L H . Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS ONE, 2010,5(5):e10563. |
[15] | KUMAR P, KUSCU C, DUTTA A . Biogenesis and function of transfer RNA-related fragments (tRFs). Trends in Biochemical Sciences, 2016,41(8):679-689. |
[16] | PEDERSON T . Regulatory RNAs derived from transfer RNA? RNA, 2010,16(10):1865-1869. |
[17] | COLE C, SOBALA A, LU C, THATCHER S R, BOWMAN A, BROWN J M, GREEN P J, BARTON G J, HUTVAGNER G . Filtering of deep sequencing data reveals the existence of abundant Dicer- dependent small RNAs derived from tRNAs. RNA, 2009,15(12):2147-2160. |
[18] | YAMASAKI S, IVANOV P, HU G F, ANDERSON P . Angiogenin cleaves tRNA and promotes stress-induced translational repression. The Journal of Cell Biology, 2009,185(1):35-42. |
[19] | VENKATESH T, SURESH P S, TSUTSUMI R . tRFs: miRNAs in disguise. Gene, 2016,579(2):133-138. |
[20] | COUVILLION M T, SACHIDANANDAM R, COLLINS K . A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Development, 2010,24(24):2742-2747. |
[21] | TELONIS A G, LOHER P, HONDA S, JING Y, PALAZZO J, KIRINO Y, RIGOUTSOS I . Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget, 2015,6(28):24797-24822. |
[22] | CHEN C J, LIU Q, ZHANG Y C, QU L H, CHEN Y Q, GUATHERET D . Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biology, 2011,8(3):538-547. |
[23] | KIM D, LANGMEAD B, SALZBERG S L . HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015,12(4):357-360. |
[24] | PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S L . Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015,33(3):290-295. |
[25] | DING D, WANG Y J, HAN M S, FU Z Y, LI W H, LIU Z H, HU Y M, TANG J H . MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS ONE, 2012,7(6):e39578. |
[26] | LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408. |
[27] | ZHANG Q, ZHAO C Z, LI M, SUN W, LIU Y, XIA H, SUN M G, LI A Q, LI C S, ZHAO S Z, HOU L, PICIMBOM J F, WANG X J, ZHAO Y X . Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC Plant Biology, 2013,13(1):180-192. |
[28] | BAEV V, NAYDENOV M, VACHEV T, APOSTOLOVA E, MEHTEROV N, GOZMANVA M, MINKOV G, SBALOK G, YAHUBYAN G . Insight into small RNA abundance and expression in high- and low-temperature stress response using deep sequencing in Arabidopsis. Plant Physiology and Biochemistry, 2014,11(16):105-114. |
[29] | JIAN X Y, ZHANG L, LI G L, ZHANG L, WANG X J, CAO X F, FANG X H, CHEN F . Identification of novel stress-regulated microRNAs fromOryza sativa L. Genomics, 2010,95(1):47-55. |
[30] | 董园园, 刘秀明, 姚娜, 赵利旦, 李海燕 . 红花miR397a基因表达及对靶基因LAC2的调控作用. 西北农林科技大学学报, 2016,44(7):173-180. |
DONG Y Y, LIU X M, YAO N, ZHAO L D, LI H Y . Expression of safflower miR397a gene and its role in LAC2 regulation. Journal of Northwest A&F University. 2016,44(7):173-180. (in Chinese) | |
[31] | 庞明利 . 番茄中miR397靶基因LeLAC~(miR397)的克隆与表达分析[D]. 泰安: 山东农业大学, 2008. |
PANG M L . Cloning and expression analysis of LeLAC~(miR397), the target gene of miR397 in tomato[D]. Taian: Shandong Agricultural University, 2008. (in Chinese) | |
[32] | CHEN L, LUAN Y S, ZHAI J M . Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 2015,34(12):2013-2025. |
[33] | MUHAMMA A, GRUBERM Y, KEN W, ABDELALI H . An insight into microRNA156 role in salinity stress responses of Alfalfa. Frontiers in Plant Science, 2017,8(356):1-15 |
[34] | JODDER J, DAS R, SARKAR D, BHATTACHARJEE P, KUNDU P . Distinct transcriptional and processing regulations control miR167a level in tomato during stress. RNA Biology, 2018,15(1):130-143. |
[35] | GUTIERREZ L, BUSSELL J D, PACURAR D I, SCHWAMBACH J, PACURAR M, BELLINI C . Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance. The Plant Cell, 2009,21(10):3119-3132. |
[36] | 王丽丽, 赵韩生, 孙化雨, 董丽莉, 娄永峰, 高志民 . 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析. 林业科学, 2015,51(6):63-70. |
WANG L L, ZHAO H S, SUN H Y, DONG L L, LOU Y F, GAO Z M . Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses. Scientia Silvae Sinicae, 2015,51(6):63-70. (in Chinese) | |
[37] | YIN Z J, LI Y, YU J W, LIU Y D, LI CH, HAN X L, SHEN F F . Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Molecular Biology Reports, 2012,39(4):4961-4970. |
[38] | LI W, CUI X, MENG Z L, HUANG H X, XIE Q, WU H, JIN H L, ZHANG D B, LIANG W Q . Transcriptional regulation of Arabidopsis miR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiology, 2012,158(3):1279-1292. |
[39] | LIU H H, TIAN X, LI Y J, WU C A, ZHENG C C . Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008,14(5):836-843. |
[40] | 李春贺, 阴祖军, 刘玉栋, 沈法富 . 盐胁迫条件下不同耐盐棉花miRNA差异表达研究 山东农业科学, 2009(7):12-17. |
LI C H, YIN Z J, LIU Y D, SHEN F F . Differential expression of miRNA in different salt-tolerant cotton varieties under salt stress. Shandong Agricultural Sciences, 2009(7):12-17. (in Chinese) | |
[41] | LEE Y S, SHIBATA Y, MALHOTRA A, DUTTA A . A novel class of small RNAs: tRNA-derived RNA fragments(tRFs). Genes Development, 2009,23(22):2639-2649. |
[42] | HORI H . Methylated nucleosides in tRNA and tRNA methyltransferases. Frontiers in Genetics, 2014,5:144. |
[43] | WANG Q, LEE I, REN J, AJAY S S, LEE Y S, BAO X . Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Molecular Therapy, 2013,21(2):368-379. |
[44] | DETZER A, ENGEL C, WUNSCHE W, SCZAKIEL G . Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Research, 2011,39(7):2727-2741. |
[45] | BABIARZ J E, RUBY J G, WANG Y, BARTEL D P, BLELLOCH R . Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Development, 2008,22(20):2773-2785. |
[46] | GOODARZI H, LIU X, NGUYEN H B, ZHANG S, FISH L, TAVAZOIE S . Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 2015,161(4):790-802. |
[47] | PAVON-ETERNOD M, GOMES S, GESLAIN R, DAI Q, ROSNER M R, PAN T . tRNA overexpression in breast cancer and functional consequences. Nucleic Acids Research, 2009,37(21):7268-7280. |
[48] | ZHOU Y, GOODENBOUR J M, GODLEY L A, WICKREMA A, PAN T . High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochemical and Biophysical Research Communication, 2009,385(2):160-164. |
[1] | 肖涛, 李辉, 罗韦, 叶涛, 余欢, 陈友波, 石钰仕, 赵德鹏, 吴芸. 基于转录组测序筛选鸡蛋绿壳性状相关基因[J]. 中国农业科学, 2023, 56(8): 1594-1605. |
[2] | 李浩, 陈金, 王洪亮, 柳开楼, 韩天富, 都江雪, 申哲, 刘立生, 黄晶, 张会民. 红壤性水稻土有机无机复合体中碳氮特征对长期施肥的响应[J]. 中国农业科学, 2023, 56(7): 1333-1343. |
[3] | 李慧, 张雨峰, 李晓刚, 王中华, 蔺经, 常有宏. 全基因组DNA甲基化和转录组联合分析鉴定杜梨耐盐相关转录因子[J]. 中国农业科学, 2023, 56(7): 1377-1390. |
[4] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
[5] | 李儒香, 周恺, 王大川, 李巧龙, 向奥妮, 李璐, 李苗苗, 向思茜, 凌英华, 何光华, 赵芳明. 水稻CSSL-Z481代换片段携带的穗部性状QTL分析及次级代换系培育[J]. 中国农业科学, 2023, 56(7): 1228-1247. |
[6] | 赵梓钧, 吴如会, 王硕, 张君, 游静, 段倩楠, 唐俊, 张新芳, 韦秘, 刘金艳, 李云峰, 何光华, 张婷. 水稻PDL2的突变导致小穗外稃退化[J]. 中国农业科学, 2023, 56(7): 1248-1259. |
[7] | 朱洪慧, 李映姿, 高远卓, 林泓, 王成洋, 晏紫仪, 彭瀚平, 李田野, 熊茂, 李云峰. 水稻短宽粒基因SWG1的图位克隆[J]. 中国农业科学, 2023, 56(7): 1260-1274. |
[8] | 张绩, 周上铃, 何发, 刘莉莎, 张玉娟, 何晋宇, 杜晓秋. 水稻α-淀粉酶基因的表达模式与颖花开放的关系[J]. 中国农业科学, 2023, 56(7): 1275-1282. |
[9] | 李懿璞, 童丽秀, 蔺雅楠, 苏治军, 包海柱, 王富贵, 刘剑, 屈佳伟, 胡树平, 孙继颖, 王志刚, 于晓芳, 徐明良, 高聚林. 玉米ZmCCT10耐低氮功能研究[J]. 中国农业科学, 2023, 56(6): 1035-1044. |
[10] | 贺江, 丁颖, 娄向弟, 姬东玲, 张向向, 王永慧, 张伟杨, 王志琴, 王伟露, 杨建昌. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6): 1045-1060. |
[11] | 渠清, 刘宁, 邹金鹏, 张雅璇, 贾慧, 孙蔓莉, 曹志艳, 董金皋. 拟轮枝镰孢与玉米籽粒互作的差异基因筛选及代谢通路分析[J]. 中国农业科学, 2023, 56(6): 1086-1101. |
[12] | 汪月宁, 代红军, 贺琰, 魏强, 郭学良, 刘妍, 殷梦婷, 王振平. 基于转录组分析油菜素内酯对高温胁迫下酿酒葡萄花色苷合成及果实品质的调控机制[J]. 中国农业科学, 2023, 56(6): 1139-1153. |
[13] | 王建锋, 成嘉欣, 舒伟学, 张艳茹, 王晓杰, 康振生, 汤春蕾. 小麦条锈菌效应蛋白Hasp83在条锈菌致病性中的功能分析[J]. 中国农业科学, 2023, 56(5): 866-878. |
[14] | 彭佳伟, 张叶, 寇单单, 杨丽, 刘晓飞, 张学英, 陈海江, 田义. ‘仓方早生’桃及其早熟芽变不同发育时期果实的转录组分析[J]. 中国农业科学, 2023, 56(5): 964-980. |
[15] | 谢军, 尹学伟, 魏灵, 王子芳, 李清虎, 张晓春, 鲁远源, 王秋月, 高明. 垄作直播控制灌溉对水稻产量和温室气体排放的影响[J]. 中国农业科学, 2023, 56(4): 697-710. |
|