中国农业科学 ›› 2019, Vol. 52 ›› Issue (5): 909-920.doi: 10.3864/j.issn.0578-1752.2019.05.012
赵春芳,岳红亮,黄双杰,周丽慧,赵凌,张亚东,陈涛,朱镇,赵庆勇,姚姝,梁文化,路凯,王才林()
收稿日期:
2018-09-11
接受日期:
2018-10-19
出版日期:
2019-03-01
发布日期:
2019-03-12
通讯作者:
王才林
作者简介:
赵春芳,E-mail: 基金资助:
ZHAO ChunFang,YUE HongLiang,HUANG ShuangJie,ZHOU LiHui,ZHAO Ling,ZHANG YaDong,CHEN Tao,ZHU Zhen,ZHAO QingYong,YAO Shu,LIANG WenHua,LU Kai,WANG CaiLin()
Received:
2018-09-11
Accepted:
2018-10-19
Online:
2019-03-01
Published:
2019-03-12
Contact:
CaiLin WANG
摘要:
【目的】 明确3个优良食味南粳品种的主要蒸煮食味品质性状的特点及与亲本间的差异,为水稻优质育种提供理论依据。【方法】 本研究以南粳系列优良食味粳稻品种南粳46、南粳9108、南粳5055及其父本关东194、母本武粳13和武香粳14为试验材料,比较分析稻米理化特性、支链淀粉分支结构、RVA谱黏滞性、热力学特性、米饭食味特性等25个食味品质相关性状的差异,分析稻米理化性状与米饭食味特征值间的关系、化学成分和支链淀粉分支结构与理化特性间的关系。【结果】 3个南粳品种在大多数性状上具有一致性,与常规粳稻亲本武粳13和武香粳14相比,3个南粳品种均具有更小的直链淀粉含量、峰值时间、热浆黏度、最终黏度、回复值、消减值、回生焓、回生率和米饭硬度值,更大的胶稠度、崩解值、米饭黏度值和综合食味值。在支链淀粉分支结构上,3个南粳品种的A链(DP6-12)比例更大,而B1链(DP13-24)更小。3个南粳品种大多数性状均与关东194相似,说明南粳系列品种的食味品质特性遗传自关东194。3个南粳品种中亦存在差异性状,南粳46的蛋白质含量和热力学参数更低,南粳9108的脂肪含量更高,而南粳5055的成糊温度更高。相关性分析表明,除蛋白质含量、糊化温度、峰值时间外,米饭综合食味值与稻米大多数理化性状存在显著或极显著的相关性,而稻米理化特性主要受直链淀粉含量的影响。【结论】 3个南粳品种食味品质的优异特性是具有更低的糊化和回生特性,更高的胶稠度和米饭黏性,更短的糊化时间和更大的崩解性能。较低的直链淀粉含量是其优良食味品质形成的主要原因,而蛋白质含量和支链淀粉分支链比例主要对糊化和回生特性起作用。
赵春芳,岳红亮,黄双杰,周丽慧,赵凌,张亚东,陈涛,朱镇,赵庆勇,姚姝,梁文化,路凯,王才林. 南粳系列水稻品种的食味品质与稻米理化特性[J]. 中国农业科学, 2019, 52(5): 909-920.
ZHAO ChunFang,YUE HongLiang,HUANG ShuangJie,ZHOU LiHui,ZHAO Ling,ZHANG YaDong,CHEN Tao,ZHU Zhen,ZHAO QingYong,YAO Shu,LIANG WenHua,LU Kai,WANG CaiLin. Eating Quality and Physicochemical Properties in Nanjing Rice Varieties[J]. Scientia Agricultura Sinica, 2019, 52(5): 909-920.
表1
南粳系列品种及其亲本间的稻米主要化学成分差异"
品种 Variety | 水分含量 Moisture (%) | 总淀粉含量 Total starch content (%) | 蛋白质含量 Protein content (%) | 脂肪含量 Lipid content (%) | 直链淀粉含量 Amylose content (%) | 胶稠度 Gel consistency (mm) | 直链淀粉含量 AC (%)-2016 | 蛋白质含量 PC (%)-2016 |
---|---|---|---|---|---|---|---|---|
南粳46 NJ46 | 13.0±0.3a | 80.2±1.13a | 7.25±0.06b | 0.78±0.03b | 10.49±0.18c | 85.0±2.0a | 9.97±0.14c | 7.56±0.06b |
南粳5055 NJ5055 | 12.8±0.2a | 80.5±1.84a | 7.91±0.03a | 0.75±0.00b | 9.51±0.21c | 86.7±1.5a | 9.74±0.18c | 8.14±0.05a |
南粳9108 NJ9108 | 12.6±0.3a | 80.6±1.45a | 7.80±0.14a | 0.87±0.01a | 9.90±0.12c | 84.3±2.5a | 9.56±0.17c | 8.09±0.04a |
关东194 Kanto194 | 12.6±0.2a | 80.2±0.89a | 7.39±0.04b | 0.78±0.01b | 7.57±0.21d | 83.7±1.2a | 8.42±0.24d | 7.51±0.02b |
武粳13 WJ13 | 12.7±0.3a | 80.3±1.14a | 8.00±0.26a | 0.72±0.02b | 16.45±0.38b | 72.0±2.0b | 16.88±0.21b | 8.34±0.04a |
武香粳14 WXJ14 | 12.5±0.3a | 80.8±1.53a | 7.87±0.19a | 0.25±0.01c | 17.98±0.13a | 74.7±1.5b | 18.32±0.31a | 8.14±0.03a |
表2
南粳系列品种及其亲本的RVA谱特征值"
品种 Variety | 峰值黏度 PV (cP) | 热浆黏度 TV (cP) | 最终黏度 FV (cP) | 崩解值 BDV (cP) | 消减值 SBV (cP) | 回复值 CSV (cP) | 成糊温度 PaT (℃) | 峰值时间 PeT (min) |
---|---|---|---|---|---|---|---|---|
南粳46 NJ46 | 2495.0±128.7b | 1304.5±67.2b | 1892.5±61.5b | 1190.5±61.5b | -452.5±279.3b | 588.0±5.7b | 71.0±0.6c | 6.3±0.2b |
南粳5055 NJ5055 | 2577.5±111.0b | 1605.0±129.0b | 2099.0±108.9b | 972.5±12.0b | -478.5±2.1b | 494.0±9.9b | 72.0±0.3b | 6.4±0.1b |
南粳9108 NJ9108 | 2344.0±96.2b | 1349.5±70.0b | 1920.0±36.8b | 1058.0±76.4b | -424.0±132.9b | 570.5±33.2b | 71.0±0.8c | 6.2±0.3b |
关东194 Kanto194 | 2904.0±8.5a | 1131.5±68.6c | 1540.5±53.0c | 1522.5±293.5a | -1113.5±309.0c | 409.0±15.6c | 76.0±1.4a | 5.2±0.1c |
武粳13 WJ13 | 2835.5±132.2a | 2110.5±224.2a | 3108.5±41.7a | 575.0±144.3c | 273.0±90.5a | 998.0±165.8a | 72.5±1.0b | 6.5±0.4a |
武香粳14 WXJ14 | 2637.0±140.4b | 1855.5±180.7a | 2947.5±190.2a | 831.5±30.4b | 310.5±50.2a | 1092.0±90.5a | 72.1±0.2b | 6.5±0.1a |
表3
南粳系列品种及其亲本的热力学特性"
品种 Variety | 起始温度 To (℃) | 峰值温度 Tp (℃) | 最终温度 Tc (℃) | 糊化焓 ?Hgel (J·G-1) | 回生焓 ?Hret (J·G-1) | 回生度 R (%) |
---|---|---|---|---|---|---|
南粳46 NJ46 | 60.71±0.61d | 67.52±0.77c | 78.64±1.55ab | 6.32±0.98b | 0.41±0.01c | 6.62±0.79c |
南粳5055 NJ5055 | 63.09±0.21bc | 70.04±1.74ab | 79.67±3.22ab | 7.36±0.78a | 0.48±0.04c | 6.62±1.28c |
南粳9108 NJ9108 | 64.26±0.14ab | 70.79±0.31ab | 80.72±0.16a | 7.96±0.96a | 0.57±0.02c | 7.19±1.18c |
关东194 Kanto194 | 65.45±0.93a | 72.82±2.90a | 82.89±3.74a | 8.05±0.64a | 0.50±0.09c | 6.32±1.58c |
武粳13 WJ13 | 62.67±0.48bc | 69.66±0.95ab | 81.96±1.83a | 5.88±0.05c | 1.98±0.21a | 33.6±3.93a |
武香粳14 WXJ14 | 61.84±0.22cd | 67.97±0.03b | 77.79±0.70b | 6.38±1.05b | 0.88±0.08b | 14.2±3.58b |
表4
稻米理化性状与米饭食味品质间的相关性"
食味特性 Taste properties | 直链淀粉含量 AC | 蛋白质含量 PC | 脂肪含量 LC | A链 A Chain | B1链 B1 Chain | 胶稠度 GC | 峰值黏度 PV | 热浆黏度 TV | 最终黏度 FV | 崩解值 BDV |
---|---|---|---|---|---|---|---|---|---|---|
食味值Taste value | -0.878** | -0.570 | 0.712 | 0.827* | -0.820* | 0.924** | -0.578 | -0.874** | -0.904** | 0.701 |
硬度值Hardness | 0.943** | 0.558 | -0.795* | -0.742 | 0.703 | -0.894** | 0.402 | 0.894** | 0.941** | -0.757* |
黏度值Stickiness | -0.938** | -0.566 | 0.781* | 0.814* | -0.772* | 0.943** | -0.467 | -0.874** | -0.929** | 0.721 |
食味特性 Taste properties | 消减值 SBV | 回复值 CSV | 成糊温度 PaT | 峰值时间 PeT | 起始温度 To | 峰值温度 Tp | 终止温度 Tc | 糊化焓 ?Hgel | 回生焓 ?Hret | 回生度 R |
食味值Taste value | -0.762* | -0.871** | -0.131 | -0.501 | 0.337 | 0.284 | 0.054 | 0.850* | -0.791* | -0.801* |
硬度值Hardness | 0.857* | 0.930** | -0.068 | 0.651 | -0.521 | -0.492 | -0.278 | -0.855* | 0.716 | 0.737 |
黏度值Stickiness | -0.826* | -0.934** | -0.033 | -0.546 | 0.400 | 0.391 | 0.194 | 0.827* | -0.758* | -0.769* |
表5
稻米主要化学成分及支链淀粉分支链比例与理化特性间的相关性"
性状Characteristics | 直链淀粉含量AC | 蛋白质含量PC | 脂肪含量LC | A链∑DP 6-12 | B1链∑DP 13-24 |
---|---|---|---|---|---|
胶稠度GC | -0.910** | -0.519 | 0.599 | 0.941** | -0.872* |
峰值黏度PV | 0.154 | -0.004 | -0.173 | -0.515 | 0.616 |
热浆黏度TV | 0.879** | 0.794* | -0.512 | -0.795* | 0.790* |
最终黏度FV | 0.963** | 0.716 | -0.637 | -0.814* | 0.762* |
崩解值BDV | -0.822* | -0.818* | 0.374 | 0.703 | -0.674 |
消减值SBV | 0.956** | 0.666 | -0.624 | -0.686 | 0.588 |
回复值CSV | 0.998** | 0.555 | -0.751 | -0.775* | 0.666 |
成糊温度PaT | -0.292 | -0.257 | 0.037 | -0.115 | 0.230 |
峰值时间PeT | 0.726 | 0.582 | -0.417 | -0.349 | 0.289 |
起始温度To | -0.615 | -0.124 | 0.382 | 0.169 | -0.048 |
峰值温度Tp | -0.649 | -0.137 | 0.502 | 0.112 | 0.051 |
终止温度Tc | -0.474 | -0.119 | 0.528 | -0.154 | 0.320 |
糊化焓?Hgel | -0.818* | -0.463 | 0.393 | 0.821* | -0.793* |
回生焓?Hret | 0.712 | 0.592 | -0.190 | -0.970** | 0.965** |
回生度R | 0.731 | 0.567 | -0.209 | -0.960** | 0.950** |
[1] |
王才林, 张亚东, 朱镇, 赵凌, 陈涛, 林静 .优质水稻新品种南粳46的选育与应用. 中国稻米,2008(3):38-40.
doi: 10.3969/j.issn.1006-8082.2008.03.011 |
WANG C L, ZHANG Y D, ZHU Z, ZHAO L, CHEN T, LIN J .Breeding and application of a new high quality rice variety Nanjing 46.China Rice ,2008(3):38-40. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2008.03.011 |
|
[2] |
王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌 . 优良食味粳稻新品种南粳9108的选育与利用. 江苏农业科学, 2013,41(9):86-88.
doi: 10.3969/j.issn.1002-1302.2013.09.032 |
WANG C L, ZHANG Y D, ZHU Z, YAO S, ZHAO Q Y, CHEN T, ZHOU L H, ZHAO L . Development of a new Japonica rice variety Nan-jing 9108 with good eating quality.Jiangsu Agricultural Sciences , 2013,41(9):86-88. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.09.032 |
|
[3] |
王才林, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝 .优良食味粳稻新品种南粳5055的选育及利用. 农业科技通讯,2012(2):84-87.
doi: 10.3969/j.issn.1000-6400.2012.02.039 |
WANG C L, ZHANG Y D, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, ZHOU L H, YAO S . Breeding and application of new good eating quality rice variety Nanjing 5055. Bulletin of Agriculture Science and Technology , 2012(2):84-87. (in Chinese)
doi: 10.3969/j.issn.1000-6400.2012.02.039 |
|
[4] | ZHANG C Q, ZHOU L H, ZHU Z B, LU H W, ZHOU X Z, QIAN Y T, LI Q F, LU Y, GU M H, LIU Q Q . Characterization of grain quality and starch fine structure of two Japonica rice( Oryza Sativa ) varieties with good sensory properties at different temperatures during the filling stage. Journal of Agriculture and Food Chemistry , 2016,64:4048-4057. |
[5] |
LI H Y, GILBERT R G . Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018,195:9-17.
doi: 10.1016/j.carbpol.2018.04.065 |
[6] |
ZHANG C Q, CHEN S J, REN X Y, LU Y, LIU D R, CAI X L, LI Q F, GAO J P, LIU Q Q . Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. Journal of Agriculture and Food Chemistry, 2017,65:2222-2232.
doi: 10.1021/acs.jafc.6b05448 pmid: 28241110 |
[7] |
WICKRAMASINGHE H A M, NODA T . Physicochemical properties of starches from Sri Lankan rice varieties.Food Science and Technology Research,2008,14(1):49-54.
doi: 10.3136/fstr.14.49 |
[8] |
BAO J S . Towards understanding of the genetic and molecular basis of eating and cooking quality of rice. Cereal Foods World, 2012,57:148-156.
doi: 10.1094/CFW-57-4-0148 |
[9] |
BAO J S, XIAO P, HIRATSUKA M, SUN M, UMEMOTO T . Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch, 2009,61(8):431-437.
doi: 10.1002/star.200800115 |
[10] |
CHUNG H J, LIU Q, LEE L, WEI D Z . Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 2011,25:968-975.
doi: 10.1016/j.foodhyd.2010.09.011 |
[11] |
NAKAMURA Y, SAKURAI A, INABA Y, KIMURA K, IWASAWA N, NAGAMINE T . The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch, 2002,54:117-131.
doi: 10.1002/1521-379X(200204)54:3/4<117::AID-STAR117>3.0.CO;2-2 |
[12] |
HANASHIRO I, ABE J I, HIZUKURI S . A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research, 1996,283:151-159.
doi: 10.1016/0008-6215(95)00408-4 |
[13] |
CHEETHAM N W H, TAO L . Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 1998,36(4):277-284.
doi: 10.1016/S0144-8617(98)00007-1 |
[14] |
李丁鲁, 张建明, 王慧, 李茂柏, 朴钟泽 . 长江下游地区部分优质粳稻品种与越光稻米支链淀粉结构特征及品质性状比较. 中国水稻科学, 2010,24(4):379-384.
doi: 10.3969/j.issn.1001-7216.2010.04.008 |
LI D L, ZHANG J M, WANG H, LI M B, PIAO Z Z . Differences in amylopectin structure and grain quality of rice between some high-quality Japonica varieties from the lower Yangtze River region, China and Koshihikari from Niigata, Japan.China Journal of Rice Science , 2010,24(4):379-384. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2010.04.008 |
|
[15] |
NAKAMURA Y, SATO A, JULIANO B O . Short-chain-length distribution in debranched rice starches differing in gelatinization temperature or cooked rice hardness. Starch, 2006,58:155-60.
doi: 10.1002/star.200500463 |
[16] |
蔡一霞, 王维, 朱智伟, 张祖建, 杨建昌, 朱庆森 . 不同类型水稻支链淀粉理化特性及其与米粉糊化特征的关系. 中国农业科学, 2006,39(6):1122-1129.
doi: 10.3321/j.issn:0578-1752.2006.06.005 |
CAI Y X, WANG W, ZHU Z W, ZHANG Z J, YANG J C, ZHU Q S . The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties. Scientia Agricultura Sinica , 2006,39(6):1122-1129. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2006.06.005 |
|
[17] |
贺晓鹏, 朱昌兰, 刘玲珑, 王方, 傅军如, 江玲, 张文伟, 刘宜柏, 万建民 . 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010,36(2):276-284.
doi: 10.3724/SP.J.1006.2010.00276 |
HE X P, ZHU C L, LIU L L, WANG F, FU J R, JIANG L, ZHANG W W, LIU Y B, WAN J M . Difference of amylopectin structure among various rice genotypes differing in grain qualities and its relation to starch physicochemical properties. Acta Agronomica Sinica , 2010,36(2):276-284. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00276 |
|
[18] |
TONG C, CHEN Y, TANG F, XU F, HUANG Y, CHEN H, BAO J . Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chemistry, 2014,161(11):239-245.
doi: 10.1016/j.foodchem.2014.04.011 pmid: 24837946 |
[19] |
李刚, 邓其明, 李双成, 王世全, 李平 . 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009,23(1):99-102.
doi: 10.3969/j.issn.1001-7216.2009.01.015 |
LI G, DENG Q M, LI S C, WANG S Q, LI P . Correlation analysis between RVA profile characteristics and quality in rice. China Journal of Rice Science , 2009,23(1):99-102. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2009.01.015 |
|
[20] |
LII C Y, TSAI M L, TSENG K H . Effect of amylose content on the rheological property of rice starch. Cereal Chemistry, 1996,73:415-420.
doi: 10.1021/bp960041s |
[21] |
SINGH N, PAL N, MAHAJAN G, SINGH S, SHEVKANI K . Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydrate Polymers, 2011,86:219-225.
doi: 10.1016/j.carbpol.2011.04.039 |
[22] | GU J F, CHEN J, CHEN L, WANG Z Q, ZHANG H, YANG J C . Grain quality changes and responses to nitrogen fertilizer of japonica rice varieties released in the Yangtze River Basin from the 1950s to 2000s. The Crop Journal , 2015,3(4):285-297. |
[23] |
谢黎虹, 罗炬, 唐绍清, 陈能, 焦桂爱, 绍高能, 魏详进, 胡培松 . 蛋白质影响水稻米饭食味品质的机理研究. 中国水稻科学, 2013,27(1):91-96.
doi: 10.3969/j.issn.10017216.2013.01.013 |
XIE L H, LUO J, TANG S Q, CHEN N, JIAO G A, SHAO G N, WEI X J, HU P S . Proteins affect rice eating quality properties and its mechanism. Chinese Journal of Rice Science , 2013,27(1):91-96. (in Chinese)
doi: 10.3969/j.issn.10017216.2013.01.013 |
|
[24] | HAMAKER B R, GRIFFIN V K . Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chemistry, 1993,70:377-380. |
[25] |
隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪 . 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663.
doi: 10.3321/j.issn:0578-1752.2005.04.003 |
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H . Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica , 2005,38(4):657-663. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2005.04.003 |
|
[26] |
朱满山, 汤述翥, 顾铭洪 . RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005,21(8):59-64.
doi: 10.3969/j.issn.1000-6850.2005.08.017 |
ZHU M S, TANG S Z, GU M H . Progresses in the study on the assessing, genetic and breeding of the rice starch RVA profile in rice eating quality. Chinese Agricultural Science Bulletin , 2005,21(8):59-64. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2005.08.017 |
|
[27] |
吴殿星, 舒庆尧, 夏英武 . 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性. 中国水稻科学, 2001,15(1):57-59.
doi: 10.3321/j.issn:1001-7216.2001.01.011 |
WU D X, SHU Q Y, XIA Y W . Rapid identification of starch viscosity property of early Indica rice varieties with different apparent amylose content by RVA profile. China Journal of Rice Science , 2001,15(1):57-59. (in Chinese)
doi: 10.3321/j.issn:1001-7216.2001.01.011 |
|
[28] |
YAN C J, TIAN Z X, FANG Y W, YANG Y C, LI J . Genetic analysis of starch paste viscosity parameters in glutinous rice ( Oryza sativa L.). Theoretical and Applied Genetics , 2011,122(1):63-76.
doi: 10.1007/s00122-010-1423-5 pmid: 202020202020202020202020 |
[29] |
VANDEPUTTE G E, VERMEYLEN R, GEEROMS J, DELCOUR J A Rice starches. I . Structural aspects provide insight into crystallinity characteristics and gelatinization behavior of granular starch. Journal of Cereal Science, 2003,38:43-52.
doi: 10.1016/S0733-5210(02)00140-6 |
[30] |
LAI V M F, LU S, LII C Y . Molecular characteristics influencing retrogradation kinetics of rice amylopectins. Cereal Chemistry, 2000,77(3):272-278.
doi: 10.1094/CCHEM.2000.77.3.272 |
[31] | UMEMOTO T, YANO M, SATOH H, SHOMURA A, NAKAMURA Y . Mapping of a gene responsible for the difference in amylopectin structure between japonica -type and indica -type rice varieties. Theoretical and Applied Genetics , 2002,104:1-8. |
[32] |
SATOH H, NISHI A, YAMASHITA K, TAKEMOTO Y, TANAKA Y, HOSAKA Y, SAKURAI A, FUJITA N, NAKAMURA Y . Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology, 2003,133(3):1111.
doi: 10.1104/pp.103.021527 pmid: 14526120 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[6] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[7] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[8] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[9] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[10] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[11] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[12] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[13] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[14] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[15] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
|