中国农业科学 ›› 2018, Vol. 51 ›› Issue (22): 4306-4315.doi: 10.3864/j.issn.0578-1752.2018.22.009
收稿日期:
2018-04-08
接受日期:
2018-07-17
出版日期:
2018-11-16
发布日期:
2018-11-16
基金资助:
LÜ Bo(),WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang(
)
Received:
2018-04-08
Accepted:
2018-07-17
Online:
2018-11-16
Published:
2018-11-16
摘要:
【目的】分析对比黄棕壤和红壤上施用不同改良剂对白菜生长状况及土壤肥力影响的差异,为改良剂的合理利用提供依据。【方法】以生物炭(C)、腐殖酸钾(HA-K)和生石灰(CaO)为试验材料,不施改良剂为对照,分别以黄棕壤和红壤为供试土壤,通过土培盆栽试验,研究不同改良剂对白菜的生物量、养分含量、可溶性蛋白和丙二醛含量的影响,以及对不同土壤pH、养分含量、交换性铝含量和酶活性的差异。【结果】(1)与对照相比,黄棕壤和红壤上施用生物炭和生石灰均能促进白菜生长,增强其抗性,主要是提高了白菜产量、叶片氮磷钾养分含量及积累量、可溶性蛋白含量,显著降低丙二醛含量。但黄棕壤和红壤上施用腐殖酸钾对白菜生长影响不同,黄棕壤上施用腐殖酸钾使得白菜产量显著增加,达到25.93 g/株,然而红壤上施用腐殖酸钾对白菜的生长无明显改善,产量仅为0.18 g/株。(2)3种改良剂对黄棕壤和红壤的肥力效应不同,与对照相比,生物炭增加土壤pH、有效磷、速效钾、有机质含量以及脲酶与酸性磷酸酶活性,显著降低碱解氮和交换性铝含量,对土壤蔗糖酶活性无显著影响,土壤肥力得以增强,其中黄棕壤的pH 增加1.39个单位,交换性铝含量减少了89.3%,有机质含量提高了168.4%;红壤的pH增加0.82个单位,交换性铝含量降低了93.9%,有机质含量提高了775.6%。对于施用腐殖酸钾和生石灰,二者均显著提高土壤pH及蔗糖酶活性,减少交换性铝含量,但腐殖酸钾对有效磷、速效钾、有机质含量以及脲酶与酸性磷酸酶活性无显著影响,显著降低碱解氮含量,交换铝含量依然很高;而施用生石灰降低土壤碱解氮、速效钾、有机质含量,对有效磷含量、脲酶与酸性磷酸酶活性无显著影响。【结论】不同改良剂对两种类型土壤上白菜生长与土壤肥力的影响有较大差异,生物炭和生石灰能改善两种土壤肥力和提高白菜的产量,而腐殖酸钾在黄棕壤中的施用效果好于红壤。
吕波,王宇函,夏浩,姚子涵,姜存仓. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315.
LÜ Bo,WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang. Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315.
表1
供试土壤及改良剂的基本性质"
土壤与改良剂 Soil and modifier | pH | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
黄棕壤YS | 5.2 | 87.5 | 5.91 | 169.4 | 13.3 |
红壤RS | 4.8 | 35 | 2.3 | 110.9 | 7.4 |
生石灰CaO | 12.6 | / | / | / | / |
腐殖酸钾HA-K | 8.5 | 124.2 | / | 59700 | 387 |
生物炭C | 8 | 102.4 | 274.74 | 4280 | 477.6 |
表2
不同改良剂对两种类型土壤上白菜农艺性状及生物量的影响"
土壤类型 Soil type | 处理 Treatment | 株高 Plant height (cm) | 产量 Yield (g/plant) | 每株叶片数 Leaf number per plant |
---|---|---|---|---|
黄棕壤 YS | CK | 9.4±0.3c | 15.90±0.24c | 7.7±0.6b |
HA-K | 13.6±0.6a | 25.93±2.04a | 8.0±0.0b | |
C | 11.7±0.5b | 23.83±0.77b | 8.3±0.6b | |
CaO | 12.8±0.8a | 26.50±0.16a | 9.3±0.6a | |
红壤 RS | CK | 1.4±0.1d | 0.07±0.01c | 3.0±0.0d |
HA-K | 2.3±0.2c | 0.18±0.02c | 4.3±0.6c | |
C | 6.2±0.1b | 7.26±0.91b | 5.4±0.7b | |
CaO | 9.2±0.8a | 9.83±0.95a | 8.3±0.6a |
表3
不同改良剂对两种类型土壤上白菜养分吸收的影响"
土壤类型 Soil type | 处理 Treatment | N | P | K | |||
---|---|---|---|---|---|---|---|
NC(g·kg-1) | TAA(mg/plant) | NC(g·kg-1) | TAA(mg/plant) | NC(g·kg-1) | TAA(mg/plant) | ||
黄棕壤 YS | CK | 23.30c | 28.60c | 5.27c | 6.47b | 16.70b | 20.54b |
HA-K | 24.64bc | 46.21b | 8.18a | 15.33a | 19.17a | 35.93a | |
C | 24.98b | 43.97b | 6.40b | 11.26ab | 17.42b | 30.66a | |
CaO | 26.54a | 50.76a | 6.84b | 13.07a | 17.29b | 33.07a | |
红壤 RS | CK | 13.44b | 0.27c | 0.50b | 0.01c | 2.49c | 0.05c |
HA-K | 9.74c | 0.39c | 0.20c | 0.01c | 1.89c | 0.08c | |
C | 26.63a | 9.25b | 2.53a | 0.88b | 18.18a | 6.32b | |
CaO | 27.20a | 20.27a | 4.13a | 3.08a | 16.02b | 11.93a |
表4
不同改良剂对两种类型土壤养分的影响"
土壤类型 Soil type | 处理 Treatment | 碱解氮 Alkaline nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
黄棕壤 YS | CK | 82.83±2.02a | 7.73±0.10c | 246±4b | 13.3±0.6b |
HA-K | 77.00±3.50b | 9.07±0.54b | 240±7b | 19.2±0.4b | |
C | 65.92±0.73c | 12.34±0.43a | 267±6a | 35.7±1.4a | |
CaO | 60.67±3.64d | 6.20±0.34d | 193±15c | 7.5±0.3c | |
红壤 RS | CK | 124.83±2.67a | 3.87±0.28a | 329±12b | 4.1±0.5b |
HA-K | 113.17±1.01b | 3.81±0.19a | 307±18b | 5.9±0.0b | |
C | 89.25±3.03c | 3.92±0.47a | 456±4a | 35.9±0.9a | |
CaO | 54.98±2.64d | 3.66±0.29a | 273±3c | 3.3±0.3c |
表5
不同改良剂对两种类型土壤酶活性的影响"
土壤类型 Soil type | 处理 Treatment | 脲酶 Urease (mg·g-1·h-1) | 蔗糖酶 Sucrase (mg·g-1·h-1) | 酸性磷酸酶 Acid phosphatase (μg·g-1·h-1) |
---|---|---|---|---|
黄棕壤 YS | CK | 0.33±0.03c | 14.95±1.48c | 24.27±0.66b |
HA-K | 0.34±0.01c | 21.63±0.94b | 24.80±0.80b | |
C | 0.41±0.02a | 15.45±1.39c | 36.86±2.26a | |
CaO | 0.37±0.04b | 29.75±0.97a | 23.27±1.91b | |
红壤 RS | CK | 0.21±0.04a | 13.33±0.54c | 6.48±0.41b |
HA-K | 0.21±0.02a | 33.68±1.72b | 7.02±0.76b | |
C | 0.25±0.01a | 10.81±0.83c | 15.06±1.08a | |
CaO | 0.15±0.02b | 53.80±5.00a | 1.91±0.37c |
[1] | 赵天龙, 解光宁, 张晓霞, 邱林权, 王娜, 张素芝 . 酸性土壤上植物应对铝胁迫的过程与机制. 应用生态学报, 2013,24(10):3003-3011. |
ZHAO T L, XIE G N, ZHANG X X, QIU L Q, WANG N, ZHANG S Z . Process and mechanism of plants in overcoming acid soil aluminum stress. Chinese Journal of Applied Ecology, 2013,24(10):3003-3011. (in Chinese) | |
[2] | ZHAO M Q, JIN F L, SUN Z W, SHI Y F . Effects of pyrolysis condition on basic group of biochar and amelioration of acid soil. Journal of Soil & Water Conservation, 2014,28(4):288-299. |
[3] |
MENG C, LU X, CAO Z, HU Z, MA W . Long-term effects of lime application on soil acidity and crop yields on a red soil in central Zhejiang. Plant & Soil, 2004,265(1/2):101-109.
doi: 10.1007/s11104-005-8941-y |
[4] | KUMAR D, SINGH A P, RAHA P, RAKSHIT A, SINGH C M, VERMA R, SINGH S, MAURYA B R, KUMAR A G . Potassium humate: A potential soil conditioner and plant growth promoter. International Journal of Agriculture Environment & Biotechnology, 2013,6(3):441. |
[5] |
MANYA J J . Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 2012,46(15):7939.
doi: 10.1021/es301029g pmid: 22775244 |
[6] |
NOVAK J M, BUSSCHER W J, LAIRD D L, AHMEDNA M, NIANDOU M A, WATTS D W . Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 2009,174(2):105-112.
doi: 10.1097/SS.0b013e3181981d9a |
[7] |
XU G, WEI L L, SUN J N, SHAO H B, CHANG S X . What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecological Engineering, 2013,52(2):119-124.
doi: 10.1016/j.ecoleng.2012.12.091 |
[8] |
胡敏, 向永生, 鲁剑巍 . 不同调理剂对酸性土壤降酸效果及大麦幼苗生长的影响. 中国土壤与肥料, 2017(3):118-124.
doi: 10.11838/sfsc.20170320 |
HU M, XIANG Y S, LU J W . Effects of soil conditioner on acid reduction and the seeding growth of barley. Soil and Fertilizer Sciences in China, 2017(3):118-124. (in Chinese)
doi: 10.11838/sfsc.20170320 |
|
[9] |
张济世, 于波涛, 张金凤, 刘玉明, 蒋曦龙, 崔振岭 . 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响. 植物营养与肥料学报, 2017,23(3):704-711.
doi: 10.11674/zwyf.16415 |
ZHANG J S, YU B T, ZHANG J F, LIU Y M, JIANG X L, CUI Z L . Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil. Journal of Plant Nutrition and Fertilizers, 2017,23(3):704-711. (in Chinese)
doi: 10.11674/zwyf.16415 |
|
[10] |
张祥, 王典, 姜存仓, 朱盼, 雷晶, 彭抒昂 . 生物炭对我国南方红壤和黄棕壤理化性质的影响. 中国生态农业学报, 2013,21(8):979-984.
doi: 10.3724/SP.J.1011.2013.00979 |
ZHANG X, WANG D, JIANG C C, ZHU P, LEI J, PENG S A . Effect of biochar on physicochemical properties of red and yellow brown soils in the south China region. Chinese Journal of Eco-Agriculture, 2013,21(8):979-984. (in Chinese)
doi: 10.3724/SP.J.1011.2013.00979 |
|
[11] | LIU F, ZHANG J, ZHANG W . The physiological effects of calcium oxide on rice seedlings. Chinese Bulletin of Botany, 2001,18(4):490-495. |
[12] |
LIU Z, RONG Q, ZHOU W, LIANG G . Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. Plos One, 2017,12(3):e0172767.
doi: 10.1371/journal.pone.0172767 pmid: 28263999 |
[13] |
于寒青, 孙楠, 吕家珑, 高菊生, 王伯仁, 徐明岗 . 红壤地区三种母质土壤熟化过程中有机质的变化特征. 植物营养与肥料学报, 2010,16(1):92-98.
doi: 10.4028/www.scientific.net/AMM.37-38.1549 |
YU H Q, SUN N, LÜ J L, GAO J S, WANG B R, XU M G . Organic matter changes in three parent soils with different long-term fertilizations in red soil regions of southern China. Journal of Plant Nutrition and Fertilizers, 2010,16(1):92-98. (in Chinese)
doi: 10.4028/www.scientific.net/AMM.37-38.1549 |
|
[14] |
包耀贤, 徐明岗, 吕粉桃, 黄庆海, 聂军, 张会民, 于寒青 . 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012,45(20):4197-4204.
doi: 10.3864/j.issn.0578-1752.2012.20.009 |
BAO Y X, XU M G, LÜ F T, HUANG Q H, NIE J, ZHANG H M, YU H Q . Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012,45(20):4197-4204. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.20.009 |
|
[15] |
陈心想, 耿增超, 王森, 赵宏飞 . 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报, 2014,33(4):751-758.
doi: 10.11654/jaes.2014.04.019 |
CHEN X X, GENG Z C, WANG S, ZHAO H F . Effects of biochar amendment on microbial biomass and enzyme activities in loess soil. Journal of Agro-Environment Science, 2014,33(4):751-758. (in Chinese)
doi: 10.11654/jaes.2014.04.019 |
|
[16] | 王学奎 . 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2015. |
WANG X K. Principles and Techniques of Plant Physiological Biochemical Experiment. 2rd ed. Beijing: Higher Education Press, 2015. ( in Chinese) | |
[17] | 鲍士旦 . 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis, 3th ed. Beijing: China Agriculture Press, 2000. ( in Chinese) | |
[18] | 周礼恺 . 土壤酶学. 北京: 科学出版社, 1987. |
ZHOU L K . Soil Enzymology . Beijing: Science Press, 1987. ( in Chinese) | |
[19] | 庞叔薇, 康德梦, 王玉保, 林铁 . 化学浸提法研究土壤中活性铝的溶出及形态分布. 环境化学, 1986(3):70-78. |
PANG S W, KANG D M, WANG Y B, LIN T . Studies on the leaching of active aluminum from soil and the distribution of aluminum species by chemical extraction.Environmental Chemistry, 1986(3):70-78. (in Chinese) | |
[20] |
王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财 . 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017,50(6):1031-1046.
doi: 10.3864/j.issn.0578-1752.2017.06.005 |
WANG Y H, HUANG Y, XIN M H, YUAN S S, KANG G Z, FENG W, XIE Y X, ZHU Y J, GUO T C . Effects of the year-round management model of N,P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Scientia Agricultura Sinica, 2017,50(6):1031-1046. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.06.005 |
|
[21] | 张德闪, 王宇蕴, 汤利, 郑毅, 左建花 . 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 2013,19(1):127-133. |
ZHANG D S, WANG Y Y, TANG L, ZHENG Y, ZUO J H . Effects of wheat and fababean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH. Plant Nutrition and Fertilizer Science, 2013,19(1):127-133. (in Chinese) | |
[22] |
王欣, 尹带霞, 张凤, 谭长银, 彭渤 . 生物炭对土壤肥力与环境质量的影响机制与风险解析. 农业工程学报, 2015,31(4):248-257.
doi: 10.3969/j.issn.1002-6819.2015.04.035 |
WANG X, YIN D X, ZHANG F, TAN C Y, PENG B . Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(4):248-257. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2015.04.035 |
|
[23] | 梁太波, 王振林, 王汝娟, 刘兰兰, 史春余 . 腐殖酸钾对生姜根系生长发育及活性氧代谢的影响. 应用生态学报, 2007,18(4):813-817. |
LIANG T B, WANG Z L, WANG R J, LIU L L, SHI C Y . Effects of potassium humate on ginger root growth and its active oxygen metabolism. Chinese Journal of Applied Ecology, 2007,18(4):813-817. (in Chinese) | |
[24] | 王宇函, 姜存仓, 吕波, 闫磊 . 腐殖酸钾对小白菜产量、生理特性及养分利用效率的影响. 华中农业大学学报, 2018(1):58-63. |
WANG Y H, JIANG C C, LÜ B, YAN L . Effects of potassium humate on yield, physiological characteristics and nutrient use efficiency of pakchoi.Journal of Huazhong Agricultural University, 2018(1):58-63. (in Chinese) | |
[25] |
KALIS E J, TEMMINGHOFF E J, WENG L, RIEMSDIJK W H . Effects of humic acid and competing cations on metal uptake by lolium perenne. Environmental Toxicology & Chemistry, 2010,25(3):702-711.
doi: 10.1897/04-576R.1 pmid: 16566154 |
[26] |
DOBRANSKYTE A, JUGDAOHSINGH R, MCCROHAN C R, STUCHLIK E, POWELL J J, WHITE K N . Effect of humic acid on water chemistry, bioavailability and toxicity of aluminum in the freshwater snail, lymnaea stagnalis, at neutral pH. Environmental Pollution, 2006,140(2):340-347.
doi: 10.1016/j.envpol.2005.06.030 pmid: 16242225 |
[27] |
张晗芝, 黄云, 刘钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010,19(11):2713-2717.
doi: 10.3969/j.issn.1674-5906.2010.11.034 |
ZHANG H Z, HUANG Y, LIU G, XU Y P, LIU J S, BEI Q C, LIN X W, ZHU J G, XIE Z B . Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 2010,19(11):2713-2717. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2010.11.034 |
|
[28] |
宋大利, 习向银, 黄绍敏, 张水清, 袁秀梅, 黄伏森, 刘阳, 王秀斌 . 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响. 植物营养与肥料学报, 2017,23(2):369-379.
doi: 10.11674/zwyf.16399 |
SONG D L, XI X Y, HUANG S M, ZHANG S Q, YUAN X M, HUANG F S, LIU Y, WANG X B . Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2017,23(2):369-379. (in Chinese)
doi: 10.11674/zwyf.16399 |
|
[29] |
ZHAO X R, DAN L I, KONG J, LIN Q M . Does biochar addition influence the change points of soil phosphorus leaching? Journal of Integrative Agriculture, 2014,13(3):499-506.
doi: 10.1016/S2095-3119(13)60705-4 |
[30] |
ZHAI L, CAIJI Z, LIU J, WANG H Y, REN T Z, GAI X P, XI B, LIU H B . Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology & Fertility of Soils, 2015,51(1):113-122.
doi: 10.1007/s00374-014-0954-3 |
[31] | 马良, 徐仁扣 . pH和添加有机物料对3种酸性土壤中磷吸附-解吸的影响. 生态与农村环境学报, 2010,26(6):596-599. |
MA L, XU R K . Effects of regulation of pH and application of organic material on adsorption and desorption of phosphorus in three types of acid soils. Journal of Ecology and Rural Environment, 2010,26(6):596-599. (in Chinese) | |
[32] |
HALIM M, CONTE P, PICCOLO A . Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 2003,52(1):265-275.
doi: 10.1016/S0045-6535(03)00185-1 pmid: 12729711 |
[33] |
PRADO A G, AIROLDI C, ZHANG Z . Humic acid-divalent cation interactions. Thermochimica Acta, 2003,405(2):287-292.
doi: 10.1016/S0040-6031(03)00196-5 |
[34] |
ZHU X, CHEN B, ZHU L, XING B . Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 2017,227:98.
doi: 10.1016/j.envpol.2017.04.032 pmid: 28458251 |
[35] |
赵军, 耿增超, 尚杰, 耿荣, 王月玲, 王森, 赵宏飞 . 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响. 生态学报, 2016,36(8):2355-2362.
doi: 10.5846/stxb201410232083 |
ZHAO J, GENG Z C, SHANG J, GENG R, WANG Y L, WANG S, ZHAO H F . Effects of biochar and biochar-based ammonium nitrate fertilizers on soil microbial biomass carbon and nitrogen and enzyme activities. Acta Ecologica Sinica, 2016,36(8):2355-2362. (in Chinese)
doi: 10.5846/stxb201410232083 |
|
[36] |
李兆林, 赵敏, 王建国, 潘相文, 陈渊, 丁希武 . 施用生石灰对土壤酶活性及大豆产量的影响. 土壤与作物, 2008,24(4):480-484.
doi: 10.3969/j.issn.1001-0068.2008.04.021 |
LI Z L, ZHAO M, WANG J G, PAN X W, CHEN Y, DING X W . Effect of quicklime application on soil enzymes activity and soybean yield. System Sciences & Comprehensive Studies in Agriculture, 2008,24(4):480-484. (in Chinese)
doi: 10.3969/j.issn.1001-0068.2008.04.021 |
[1] | 李佳燕,孙良杰,马南,王丰,汪景宽. 不同肥力棕壤玉米根茬和茎叶残体碳氮的固定特征[J]. 中国农业科学, 2022, 55(23): 4664-4677. |
[2] | 马超,王玉宝,邬刚,王泓,汪建飞,朱林,李佳佳,马晓静,柴如山. 近十年安徽省秸秆直接还田研究进展[J]. 中国农业科学, 2022, 55(18): 3584-3599. |
[3] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[4] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[5] | 顾博文,杨劲峰,鲁晓玲,吴怡慧,李娜,刘宁,安宁,韩晓日. 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响[J]. 中国农业科学, 2021, 54(21): 4552-4561. |
[6] | 尹思佳,李慧,徐志强,裴久渤,戴继光,刘雨薇,李艾蒙,于雅茜,刘维,汪景宽. 东北典型黑土区旱地耕层土壤肥力指标的纬度变化特征及其关系[J]. 中国农业科学, 2021, 54(10): 2132-2141. |
[7] | 李小磊,张玉军,申凤敏,姜桂英,刘芳,柳开楼,刘世亮. 长期施肥对红壤性水稻土不同土层活性有机质及碳库管理指数的影响[J]. 中国农业科学, 2020, 53(6): 1189-1201. |
[8] | 区惠平,周柳强,黄金生,谢如林,朱晓晖,彭嘉宇,曾艳,莫宗标,谭宏伟,叶盛勤. 赤红壤蔗区11年连续增量施磷下磷素演变及其 对甘蔗产量与磷流失的影响[J]. 中国农业科学, 2020, 53(22): 4623-4633. |
[9] | 向伟,王雷,刘天奇,李诗豪,翟中兵,李成芳. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J]. 中国农业科学, 2020, 53(22): 4634-4645. |
[10] | 郑福丽,刘苹,李国生,张柏松,李燕,魏建林,谭德水. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应[J]. 中国农业科学, 2020, 53(21): 4355-4364. |
[11] | 钟亮,郭熙,国佳欣,韩逸,朱青,熊杏. 基于数据挖掘技术的高光谱土壤质地分类研究[J]. 中国农业科学, 2020, 53(21): 4449-4459. |
[12] | 张露,张水清,任科宇,李俊杰,段英华,徐明岗. 不同肥力潮土的酶活计量比特征及其与微生物量的关系[J]. 中国农业科学, 2020, 53(20): 4226-4236. |
[13] | 张维理,KOLBEH,张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331. |
[14] | 董成,陈智勇,谢迎新,张阳阳,缑培欣,杨家蘅,马冬云,王晨阳,郭天财. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响[J]. 中国农业科学, 2020, 53(19): 4024-4034. |
[15] | 赵欣周,张世春,李颖,郑益旻,赵洪亮,谢立勇. 辽河平原玉米田不同施肥下的土壤氨挥发特征[J]. 中国农业科学, 2020, 53(18): 3741-3751. |
|