中国农业科学 ›› 2020, Vol. 53 ›› Issue (19): 4024-4034.doi: 10.3864/j.issn.0578-1752.2020.19.015
董成,陈智勇,谢迎新,张阳阳,缑培欣,杨家蘅,马冬云,王晨阳,郭天财
收稿日期:
2019-12-17
接受日期:
2020-02-16
出版日期:
2020-10-01
发布日期:
2020-10-19
通讯作者:
谢迎新
基金资助:
DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai
Received:
2019-12-17
Accepted:
2020-02-16
Online:
2020-10-01
Published:
2020-10-19
Contact:
YingXin XIE
摘要:
【目的】研究连续添加生物炭6年后对农田土壤氮转化相关微生物功能基因的影响,揭示生物炭影响作物产量和N2O排放的微生物学机制,并为生物炭的推广使用提供理论依据。【方法】通过在潮土农田设置0(BC0,对照)、2.25(BCL,低量)、6.75(BCM,中量)和11.25 t·hm-2(BCH,高量)4个秸秆生物炭量处理的田间定位试验,采用田间观测、化学分析、荧光定量PCR(qPCR)技术,系统研究施用生物炭对氧化亚氮(N2O)排放、氨单加氧酶(amoA)、亚硝酸还原酶(nirK、nirS)、氧化亚氮还原酶(nosZ)基因丰度及夏玉米产量的影响。【结果】与对照BC0处理相比,施用生物炭可显著提高夏玉米籽粒产量,且BCM处理籽粒产量达到最大值10 811 kg·hm-2,显著降低夏玉米生育期N2O累积排放量,并以BCM处理减少N2O排放效果最优。研究还发现,在夏玉米多个生育时期,与对照比较,生物炭施用可以显著提高耕层土壤无机氮储量和土壤含水量。此外,随着生物炭施用量增加,土壤氨氧化古菌(AOA)基因拷贝数在夏玉米大喇叭口期和成熟期均表现为先上升后下降趋势,且两个时期均以BCM处理最高,而氨氧化细菌(AOB)基因拷贝数在夏玉米大喇叭口期和成熟期分别为BCH处理和BCM处理最高。与对照相比,中、高量生物炭施用(BCM、BCH处理)可显著提高夏玉米大喇叭口期和成熟期土壤反硝化作用功能相关基因(nirK、nirS、nosZ)拷贝数。相关性分析表明,夏玉米成熟期土壤N2O排放通量与土壤硝态氮、土壤含水量、AOA、AOB、nirK、nirS、nosZ呈显著负相关关系。【结论】施用生物炭通过增加土壤微生物氮转化功能基因丰度进而降低土壤N2O排放,通过增加土壤耕层无机氮储量和土壤水分含量进而提高作物产量,并以中等用量(6.75 t·hm-2)施用效果最优。
董成,陈智勇,谢迎新,张阳阳,缑培欣,杨家蘅,马冬云,王晨阳,郭天财. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响[J]. 中国农业科学, 2020, 53(19): 4024-4034.
DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission[J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
表1
荧光定量PCR引物及扩增条件"
扩增基因 Target | 引物 Primer | 序列 (5′— 3′) Sequence (5′- 3′) | 荧光定量PCR程序 Real-time PCR profiles | 参考文献 References |
---|---|---|---|---|
AOA | Arch-amoA F | STAATGGTCTGGCTTAGACG | 95℃ 5 min;95℃ 30 s,58℃ | [31] |
Arch-amoA R | GCGGCCATCCATCTGTATGT | 30 s,72℃ 1 min,35 cycles | ||
AOB | amoA-1F | GGGGTTTCTACTGGTGGT | 95℃ 5 min;95℃ 30 s,58℃ | [32] |
amoA-2R | CCCCTCKGSAAAGCCTTCTTC | 30 s,72℃ 1 min,35 cycles | ||
nirK | nirK1F | GGMATGGTKCCSTGGCA | 95℃ 5 min;95℃ 30 s,58℃ | [33] |
nirK5R | GCCTCGATCAGRTTRTGG | 30 s,72℃ 1 min,35 cycles | ||
nirS | Cd3aF | GTSAACGTSAAGGARACSGG | 95℃ 5 min;95℃ 30 s,58℃ | [34] |
R3cdR | GASTTCGGRTGSGTCTTGA | 30 s,72℃ 1 min,35 cycles | ||
nosZ | nosZ-F | AGAACGACCAGCTGATCGACA | 95℃ 5 min;95℃ 30 s,60℃ | [35] |
nosZ-R | TCCATGGTGACGCCGTGGTTG | 30 s,72℃ 1 min,35 cycles |
表2
土壤性质、N2O排放与功能基因丰度的相关性分析"
N2O | NH4+ | NO3- | WFPS | AOA | AOB | nirK | nirS | nosZ | |
---|---|---|---|---|---|---|---|---|---|
N2O | 1 | -0.098 | -0.611* | -0.645* | -0.598* | -0.866** | -0.863** | -0.915** | -0.886** |
NH4+ | 1 | 0.231 | -0.289 | 0.168 | 0.248 | 0.167 | 0.231 | -0.18 | |
NO3- | 1 | 0.121 | 0.764** | 0.731** | 0.651* | 0.564 | 0.512 | ||
WFPS | 1 | 0.007 | 0.383 | 0.349 | 0.610* | 0.645* | |||
AOA | 1 | 0.846** | 0.796** | 0.535 | 0.568 | ||||
AOB | 1 | 0.960** | 0.821** | 0.720** | |||||
nirK | 1 | 0.810** | 0.706* | ||||||
nirS | 1 | 0.664* | |||||||
nosZ | . | 1 |
[1] | LEHMANN J, GAUNT J, RONDON M. Biochar sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419. |
[2] | 谢祖彬, 刘琦, 许燕萍, 朱春悟. 生物炭研究进展及其研究方向. 土壤, 2011, 43(6): 857-861. |
XIE Z B, LIU Q, XU Y P, ZHU C W. Advances and perspective of biochar research. Soils, 2011, 43(6): 857-861. (in Chinese) | |
[3] | 叶英新. 生物质炭施用两年后黄淮海平原黄潮土土壤性质、作物产量及温室气体排放的变化[D]. 南京: 南京农业大学, 2014. |
YE Y X. Changes in soil properties, crop yield and greenhouse gas emission two years after biochar amendment in a calcareous entisol from north China[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) | |
[4] | 王艳阳, 魏永霞, 孙继鹏, 张雨凤. 不同生物炭施用量的土壤水分入渗及其分布特性. 农业工程学报, 2016, 32(8): 113-119. |
WANG Y Y, WEI Y X, SUN J P, ZHANG Y F. Soil water infiltration and distribution characteristics under different biochar addition amount. Transaction of the Chinese Society of Agricultural Engineering, 2016, 32(8): 113-119. (in Chinese) | |
[5] | 刘园, KHAN M J, 靳海洋, 白雪莹, 谢迎新, 赵旭, 王慎强, 王晨阳. 秸秆生物炭对潮土作物产量和土壤性状的影响. 土壤学报, 2015, 52(4): 849-858. |
LIU Y, KHAN M J, JIN H Y, BAI X Y, XIE Y X, ZHAO X, WANG S Q, WANG C Y. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols. Acta Pedologica Sinicna, 2015, 52(4): 849-858. (in Chinese) | |
[6] | HARTER J, GUZMANBUSTAMANTE I, KUEHFUSS S, RUSER R, WELL R, SPOTT O, KAPPLER A, BEHRENS S. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 2016, 6(1): 39574. |
[7] | 陈温福, 张伟明, 孟军. 生物炭应用技术研究. 中国工程科学, 2011, 13(2): 83-89. |
CHEN W H, ZHANG W M, MENG J. Researches on biochar application technology. Chinese Journal of Engineering Science, 2011, 13(2): 83-89. (in Chinese) | |
[8] | VERHOEVEN E, SIX J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agriculture, Ecosystems & Environment, 2014, 191(15): 27-38. |
[9] | CLOUGH T J, BERTRAM J E, RAY J L, CONDRON L M, O'CALLAGHAN M, SHERLOCK R R, WELLS N S. Unweathered wood biochar impact on nitrous oxide emissions from a bovine- urineamended pasture soil. Soil Science Society of America Journal, 2010, 74(3): 852-860. |
[10] | 胡俊鹏, 潘凤娥, 王小淇, 季雅岚, 赵伶, 方雅各, 杨霖, 王师笈, 孟磊. 秸秆及生物炭添加对燥红壤N2O排放的影响. 热带作物学报, 2016, 37(4): 784-789. |
HU J P, PAN F E, WANG X Q, JI Y L, ZHAO L, FANG Y G, YANG L, WANG S J, MENG L. Effects of addition of both stalk and biochar on N2O emission from torrid red soil. Chinese Journal of Tropical Crops, 2016, 37(4): 784-789. (in Chinese) | |
[11] |
BRAKER G, CONRAD R. Diversity, structure, and size of N2O-producing microbial communities in soilsâ-what matters for their functioning? Advances in Applied Microbiology, 2011, 75: 33-70.
pmid: 21807245 |
[12] |
CANFIELD D E, GLAZERA N, FALKOWSKI P G. The evolution and future of earth's nitrogen cycle. Science, 2010, 330(6001): 192-196.
doi: 10.1126/science.1186120 pmid: 20929768 |
[13] |
THOMSON A J, GIANNOPOULOS G, PRETTY J, BAGGS E M, RICHARDSON D J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society of London, 2012, 367(1593): 1157-1168.
doi: 10.1098/rstb.2011.0415 pmid: 22451101 |
[14] | 王晓辉. 生物炭对设施栽培土壤硝化和反硝化微生物群落的影响研究[D]. 北京: 中国科学院研究生院, 2013. |
WANG X H. Effect of biochar on nitrifying and denitrifying communities in greenhouse soils[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese) | |
[15] |
WARNOCK D D, LEHMANN J, KUYPER T W, RILLIG M C. Mycorrhizal responses to biochar in soil - Concepts and mechanisms. Plant and Soil, 2007, 300(1/2): 9-20.
doi: 10.1007/s11104-007-9391-5 |
[16] | DUAN P P, ZHANG X, ZHANG Q Q, WU Z, XIONG Z Q. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Science of the Total Environment, 2018, 642(2018): 1303-1310. |
[17] |
张梦阳, 夏浩, 吕波, 丛铭, 宋文群, 姜存仓. 短期生物炭添加对不同类型土壤细菌和氨氧化微生物的影响. 中国农业科学, 2019, 52(7): 1260-1271.
doi: 10.3864/j.issn.0578-1752.2019.07.013 |
ZHANG M Y, XIA H, LÜ B, CONG M, SONG W Q, JIANG C C. Short-term effect of biochar amendments on total bacteria and ammonia oxidizers communities in different type soils. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.07.013 |
|
[18] | 陈心想, 耿增超, 王森, 赵宏飞. 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报, 2014, 33(4): 751-758. |
CHEN X X, GENG Z C, WANG S, ZHAO H F. Effects of biochar amendment on microbial biomass and enzyme activities in Loess Soil. Journal of Agro-Environment Science, 2014, 33(4): 751-758. (in Chinese) | |
[19] |
OLESZCZUK P, JOSKO I, FUTA B, PASIECZNA-PATKOWSKA S, PALYS E, KRASKA P. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 2014, 214/215: 10-18.
doi: 10.1016/j.geoderma.2013.10.010 |
[20] |
WU F P, JIA Z K, WANG S G, SCOTT X, CHANG S X, STARTSEV A. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils, 2013, 49(5): 555-565.
doi: 10.1007/s00374-012-0745-7 |
[21] |
李明, 李忠佩, 刘明, 江春玉, 吴萌. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学, 2015, 48(7): 1361-1369.
doi: 10.3864/j.issn.0578-1752.2015.07.11 |
LI M, LI Z P, LIU M, JIANG C Y, WU M. Effects of different straw biochar on nutrient and microbial community structure of a Red Paddy Soil. Scientia Agricultura Sinica, 2015, 48(7): 1361-1369. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.07.11 |
|
[22] | ZHAO X, WANG J W, WANG S Q, XING G X. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant and Soil, 2014, 378(1/2): 279-294. |
[23] | HE L, LIU Y, ZHAO J, BI Y C, ZHAO, X, WANG S Q, XING G X. Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biology and Fertility of Soils, 2016, 52(2): 137-149. |
[24] |
LI X, HU C, DELGADO J A, ZHANG Y, OUYANG Z. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north China plain. Agricultural Water Management, 2007, 89(1/2): 137-147.
doi: 10.1016/j.agwat.2006.12.012 |
[25] | WANG S Q, ZHAO X, XING G X, YANG L. Large-scale biochar production from crop residue: A new idea and the biogas-energy pyrolysis system. BioResources, 2012, 8(1): 8-11. |
[26] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. |
LU R K. Methods in Soil and Agrochemical Analysis. Beijing: China Agricultural Technique Press, 1999. (in Chinese) | |
[27] | CHEN X, ZHOU J, WANG X, BLACKMER A M, ZHANG F. Optimal rates of nitrogen fertilization for a winter wheat-corn cropping system in Northern China. Communications in Soil Science and Plant Analysis, 2004, 35(3): 583-597. |
[28] | 耿增超, 戴伟. 土壤学. 北京: 科学出版社, 2011. |
GENG Z C, DAI W. Pedology. Beijing: Science Press, 2011. (in Chinese) | |
[29] | NIU Y, CHEN Z, MÜLLER C, ZAMAN M M, KIM D, YU H, D W. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize-wheat rotation in the North China Plain. Atmospheric Environment, 2017, 170: 58-70. |
[30] | 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和氮肥施用及品种对稻田N2O排放的影响. 应用生态学报, 1999, 10(2): 186-188. |
XU H, XING G X, CAI Z C, HE T Z X. Effect of soil water regime and chemical N fertilizers application on N2O emission from paddy field. Chinese Journal of Applied Ecology, 1999, 10(2): 186-188. (in Chinese) | |
[31] |
FRANCIS C A, ROBERTS K J, BEMAN J M, SANTORO A E, OAKLEY B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the USA, 2005, 102(41): 14683-14688.
doi: 10.1073/pnas.0506625102 pmid: 16186488 |
[32] |
ROTTHAUWE J H. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704-4715.
doi: 10.1128/AEM.63.12.4704-4712.1997 pmid: 9406389 |
[33] |
HALLIN S, LINDGREN P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied and Environmental Microbiology, 1999, 65(4): 1652-1657.
doi: 10.1128/AEM.65.4.1652-1657.1999 pmid: 10103263 |
[34] |
THROBACK I N, ENWALL K, JARVIS A, HALLIN S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004, 49(3): 401-417.
doi: 10.1016/j.femsec.2004.04.011 pmid: 19712290 |
[35] |
KLOOS K, MERGEL A, CHRISTOPHER R, BOTHE H. Denitrification within the genus azospirillum and other associative bacteria. Functional Plant Biology, 2001, 28(9): 991-998.
doi: 10.1071/PP01071 |
[36] |
UZOMA K C, INOUE M, ANDRY H, FUJIMAKI H, ZAHOOR A, NISHIHARA E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 2011, 27(2): 205-212.
doi: 10.1111/j.1475-2743.2011.00340.x |
[37] | 王江伟, 周春菊, 赵旭, 徐浩江, 王慎强, 邢光熹. 秸秆源黑炭还田对水稻土生产力和固碳的影响. 环境科学研究, 2013, 26(12): 1325-1332. |
WANG J W, ZHOU C J, ZHAO X, XU H J, WANG S Q, XING G X. Effects of crop-straw biochar on paddy soil productivity and carbon sequestration. Research of Environmental Sciences, 2013, 26(12): 1325-1332. (in Chinese) | |
[38] | OGUNTUNDE P G, ABIODUN B J, AJAYI A E. Effects of charcoal production on soil physical properties in Ghana. Joumal of Plant Nutrient and soil Science, 2008, 171: 591-596. |
[39] |
KOOL D M, DOLFING J, WRAGE N, GROENIGEN J W V. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology & Biochemistry, 2011, 43(1): 174-178.
doi: 10.1016/j.soilbio.2010.09.030 |
[40] |
JU X T, LU X, GAO Z L, CHEN X P, SU F, KOGGE M, RÖMHELD V, CHRISTIE P, ZHANG F. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution, 2011, 159(4): 1007-1016.
doi: 10.1016/j.envpol.2010.10.040 pmid: 21251741 |
[41] | 陈晨, 许欣, 毕智超, 熊正琴. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响. 环境科学学报, 2017, 37(5): 1912-1920. |
CHEN C, XU X, BI Z C, XIONG Z Q. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production. Acta Scientiae Circumstantiae, 2017, 37(5): 1912-1920. (in Chinese) | |
[42] | 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108. |
HE J Z, ZHANG L M. Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 2013, 40(1): 98-108. (in Chinese) | |
[43] | ZHANG X, DUAN P P, WU Z, XIONG Z Q. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil. Science of the Total Environment, 2019, 687(2019): 433-440. |
[44] |
WU Z, ZHANG X, DONG Y B, XU X, XIONG Z Q. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. Environmental Science and Pollution Research, 2018, 25(31): 31307-31317.
doi: 10.1007/s11356-018-3112-x pmid: 30194577 |
[45] |
SHEN J P, ZHANG L M, ZHU Y G, ZHANG J B, HE J Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia- oxidizing archaea communities of an alkaline sandy loam. Environmental microbiology, 2008, 10(6): 1601-1611.
doi: 10.1111/j.1462-2920.2008.01578.x pmid: 18336563 |
[46] | 贺超卉, 董文旭, 胡春胜, 李佳珍. 生物质炭对土壤N2O消耗的影响及其微生物影响机理. 中国生态农业学报, 2019, 27(9): 1301-1308. |
HE C H, DONG W X, HU C S, LI J Z. Biochar’s effect on soil N2O consumption and the microbial mechanism. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1301-1308. (in Chinese) | |
[47] |
WANG C, LU H H, DONG D, DENG H, STRONG P J, WANG H L, WU W X. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community. Environmental Science & Technology, 2013, 47(13): 7341-7349.
doi: 10.1021/es305293h pmid: 23745957 |
[48] |
HARTER J, WEIGOLD P, EL-HADIDI M, HUSON D H, KAPPLER A, BEHRENS S. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562: 379-390.
doi: 10.1016/j.scitotenv.2016.03.220 pmid: 27100017 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 王树会,陶雯,梁硕,张旭博,孙楠,徐明岗. 长期施用有机肥情景下华北平原旱地土壤固碳及N2O排放的空间格局[J]. 中国农业科学, 2022, 55(6): 1159-1171. |
[3] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[4] | 房孟颖,卢霖,王庆燕,董学瑞,闫鹏,董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808-4822. |
[5] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[6] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[7] | 耿文杰,李宾,任佰朝,赵斌,刘鹏,张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2): 307-319. |
[8] | 张川,刘栋,王洪章,任昊,赵斌,张吉旺,任佰朝,刘存辉,刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710-3722. |
[9] | 李小凡,邵靖宜,于维祯,刘鹏,赵斌,张吉旺,任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516-3529. |
[10] | 张维理,张认连,张定祥,白占国,张晶,师华定. 世界主要国家土壤调查工作回顾[J]. 中国农业科学, 2022, 55(18): 3565-3583. |
[11] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[12] | 陈杨,徐孟泽,王玉红,白由路,卢艳丽,王磊. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987. |
[13] | 魏蕾,米晓田,孙利谦,李昭敏,石美,何刚,王朝辉. 我国北方麦区小麦生产的化肥、农药和灌溉水使用现状及其减用潜力[J]. 中国农业科学, 2022, 55(13): 2584-2597. |
[14] | 龚小雅,石记博,方凌,方亚鹏,吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 2022, 55(12): 2472-2484. |
[15] | 宋博文,杨龙,潘云飞,李海强,李浩,冯宏祖,陆宴辉. 农田景观格局对南疆苹果园梨小食心虫成虫种群动态的影响[J]. 中国农业科学, 2022, 55(1): 85-95. |
|