中国农业科学 ›› 2017, Vol. 50 ›› Issue (11): 2129-2140.doi: 10.3864/j.issn.0578-1752.2017.11.018

所属专题: 玉米栽培研究专刊

• 土壤耕作与施肥 • 上一篇    下一篇

土壤耕作和施肥方式对夏玉米干物质积累与产量的影响

周宝元,孙雪芳,丁在松,马玮,赵明   

  1. 中国农业科学院作物科学研究所/农业部作物生理生态与栽培重点开放实验室,北京100081
  • 收稿日期:2016-07-11 出版日期:2017-06-01 发布日期:2017-06-01
  • 联系方式: 周宝元,E-mail:zhoubaoyuan2008@163.com
  • 基金资助:
    国家科技支撑计划(2013BAD07B00)、国家重点研发计划(2016YFD0300103)、国家玉米产业技术体系(CRRS-02)

Effect of Tillage Practice and Fertilization on Dry Matter Accumulation and Grain Yield of Summer Maize (Zea Mays L.)

ZHOU BaoYuan, SUN XueFang, DING ZaiSong, MA Wei, ZHAO Ming   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture, Beijing 100081
  • Received:2016-07-11 Published:2017-06-01 Online:2017-06-01

摘要: 【目的】改善土壤耕作方式和氮肥施用技术是进一步提高玉米产量和氮肥利用效率的重要措施。本研究拟通过分析浅旋、免耕和条带深松3种耕作方式下缓释肥和常规施肥对夏玉米干物质积累、转运及光合特性的影响,阐明其产量及氮肥效率差异形成的生理过程。【方法】试验于2013—2014年在河南新乡进行。采用裂区设计,耕作方式为主区,设浅旋耕作(rotary tillage,R),免耕直播(no-tillage,N)和条带深松(sub-soiling,S)3种耕作方式;肥料类型为副区,设缓释肥(slow release fertilizer,SRF)和常规施肥(conventional compound fertilizer,CCF)2个处理。【结果】与传统施肥和土壤耕作方式比,施用缓释肥与条带深松耕作均能维持植株开花后较高的叶面积指数和光合速率,且条带深松与缓释肥耦合处理的值最大。成熟期,3种耕作方式下,缓释肥处理叶面积指数降幅两年平均分别低于常规施肥处理7.5%(N)、9.7%(R)和11.8%(S);缓释肥处理净光合速率降幅两年平均分别低于常规施肥处理7.3%(N)、11.5%(R)和16.8%(S)。条带深松耕作下缓释肥处理LAI高于其他处理16.0%—47.9%,穗位叶光合速率较其他处理高14.5%—52.3%。花后较高的叶面积指数和光合速率可促进玉米中后期干物质积累速率及积累持续期的增加,从而显著提高花后光合产物的积累量及同化量。3种耕作方式下,缓释肥处理花后干物质同化量较常规施肥处理两年平均分别提高1.5%(N)、21.4%(R)和24.4%(S);缓释肥处理花后干物质积累量较常规施肥处理两年平均分别提高11.0%(N)、12.2%(R)和17.0%(S)。其中条带深松耕作与缓释肥耦合处理花后干物质积累量和同化量显著高于其他处理,两年平均增幅分别为13.4%—28.9%和17.4%—39.6%。玉米花后干物质积累及同化量的增加是玉米籽粒产量提高的主要原因。因此,施用缓释肥通过增加千粒重,条带深松耕作通过增加收获穗数分别显著提高夏玉米产量;条带深松与缓释肥耦合处理产量显著高于其他处理,增幅为9.2%—23.2%。【结论】条带深松满足了作物对氮素的空间要求,缓释肥满足了作物对氮素的时间要求,施用缓释肥并结合条带深松,可有效调控土壤的养分供应状况,提高土壤氮素供应与作物需氮的时空吻合度,有利于实现黄淮海区夏玉米高产高效及生态安全生产的目标。

关键词: 夏玉米, 缓释肥, 耕作方式, 干物质积累与转运, 产量

Abstract: 【Objective】 Soil tillage practice and fertilization have remarkable influence on crop yield and nitrogen use efficiency. The objective of this study was to clarify physiological reason for differences of maize yield and nitrogen efficiency by exploring the effects of the slow release fertilizer on dry matter accumulation and transportation, and characteristics of photosynthesis of summer maize under different soil tillages.【Method】A field experiment was conducted at Xinxiang, Henan province from 2013 to 2014. The experimental design was a split plot. The main plot was three soil tillage management, rototilling (R), no-tillage (N) and sub-soiling (S), and the subplot was nitrogen application, N 270 kg·hm-2 slow release fertilizer treatment (SRF), and N 270 kg·hm-2 conventional compound fertilizer with two applications (CCF) (40% as basal application and 60% at the beginning of male tetrad stage). 【Result】Compared with conventional fertilization and soil tillage practices, the application of slow release fertilizer and the sub-soiling tillage significantly increased post-silking leaf area (LAI) and photosynthetic rate (Pn) of maize. At maturity, the decrease in LAI for SRF was 7.5% (N), 9.7% (R), and 11.8% (S) lower than those for CCF; the decrease in Pn for SRF was 7.3% (N), 11.5% (R), and 16.8% (S) lower than those for CCF averaged the two years. The LAI of the slow release fertilizer under the sub-soiling tillage (S-SRF) increased by 16.0%-47.9%, and the Pn increased by 14.5%-52.3% than that of other treatments. Higher post-silking LAI and Pn promoted the post-silking dry matter accumulation rate and duration increased, eventually increased post-silking dry matter accumulation and its transportation to grain. The averaged dry matter assimilation post-silking of applying the slow release fertilizer across two years were 1.5%, 21.4% and 24.4% higher, and the averaged dry matter accumulation post-silking of applying the slow release fertilizer across two years were 11%, 12.2% and 17% higher, respectively, compared to those in the conventional fertilizer treatment under rototilling, no-tillage, and sub-soiling. The post-silking dry matter accumulation and assimilation of S-SRF were significantly higher than that in other treatments, increased by 13.4%-28.9% and 17.4%-39.6%, respectively. The post-silking dry matter accumulation and assimilation were the main reason for yield increase. As a result, the application of slow release fertilizer and the sub-soiling tillage significantly improved the grain yield of summer maize by increasing 1000-kernel weight and harvest ear numbers, respectively. Among the treatments, the yield of the slow release fertilizer under the sub-soiling tillage (S-SRF) was 9.2%-23.2% higher than that in other treatments.【Conclusion】The sub-soiling tillage improved the spatial distribution of soil nitrogen, and the slow release fertilizer improved the temporal distribution of soil nitrogen. The integrated sub-soiling and slow release fertilizer improved N supply corresponded to maize critical growth stages and matched N uptake, which provided an approach for enhancing the nitrogen fertilizer use efficiency and grain yield in Huang-Huai-Hai plain.

Key words: summer maize, slow-release fertilizer, soil tillage, dry matter accumulation and transportation, grain yield