[1]姜 丹, 梁建丽, 陈晓丽, 洪 波, 贾文锁, 赵梁军. 拟南芥花期基因FT转化切花菊‘神马’. 园艺学报, 2010, 37(3): 441-448.
Jiang D, Liang J L,Chen X L,Hong B,Jia W S,Zhao L J. Transformation of Arabidopsis flowering gene FT to from cut chrysanthemum ‘Jinba’ by agrobacterium mediate. Acta Horticulturae Sinica, 2010, 37(3): 441-448.(in Chinese)
[2]Shchennikova A V, Shulga O A, Immink R, Skryabin K G, Angenent G C. Identification and characterization of four chrysanthemum MADS-Box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiology, 2004, 134: 1632-1641.
[3]Chen S, Miao H, Chen F, Jiang B, Lu J, Fang W. Analysis of expressed sequence tags (ESTs) collected from the inflorescence of chrysanthemum. Plant Molecular Biology Reporter, 2009, 27: 503-510.
[4]邵寒霜, 李继红, 郑学勤, 陈守才. 拟南芥Lfy cDNA的克隆及转化菊花的研究. 植物学报, 1999, 41(3): 268-271.
Shao H S, Li J H, Zheng X Q, Chen S C. Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to chrysanthemum morifolium. Acta Botanica Sinica, 1999, 41(3): 268-271. (in Chinese)
[5]皮 伟, 李名扬. 根癌农杆菌介导FPF1基因转化菊花的研究. 西南大学学报, 2007, 29(4): 70-73.
Pi W, Li M Y. Preliminary studies on transgenic chrysanthemum with FPF1 gene mediated by Agrobactrium tumefaciens. Journal of Southwest University, 2007, 29(4): 70-73. (in Chinese)
[6]吕晋慧, 吴月亮, 孙 磊, 张启翔. AP1基因转化地被菊品种‘玉人面’的研究. 林业科学, 2007, 43(9): 128-132.
Lü J H, Wu Y L, Sun L, Zhang Q X. Genetic transformation of chrysanthemum morifolium cv. ‘Yu Ren Mian’ with AP1 gene mediated by Agrobacterium tumefaciens. Scientia Silvae Sinicae, 2007, 43(9): 128-132. (in Chinese)
[7]Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D G. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell, 2000, 12(6): 963-978.
[8]Hsu T W, Tsai W C, Wang D P, Lin S, Hsiao Y Y, Chen W H, Chen H H. Differential gene expression analysis by cDNA- AFLP between flower buds of Phalaenopsis Hsiang Fei cv. H. F. and its somaclonal variant. Plant Science, 2008, 175: 415-422.
[9]余 梅, 江昌俊, 叶爱华, 王朝霞, 朱 林, 邓威威, 高 轩, 宛晓春. 利用cDNA-AFLP技术研究茶树花蕾发育基因差异表达片段.茶叶科学, 2007, 27(3): 259-264.
Yu M, Jiang C J, Ye A H, Wang Z X, Zhu L, Deng W W, Gao X, Wan X C. Analysis of differential gene expression of flower bud of tea plant (Camellia sinensis) by cDNA-AFLP. Journal of Tea Science, 2007, 27(3): 259-264. (in Chinese)
[10]林桂玉, 黄在范, 张翠华, 郑成淑. 菊花花芽分化期超微弱发光及生理代谢的变化. 园艺学报, 2008, 35(12): 1819-1824.
Lin G Y, Huang Z F, Zhang C H, Zheng C S. Changes in ultraweak luminescence intensity, respiration rate and physiological metabolism of chrysanthemum during floral differentiation. Acta Horticulturae Sinica, 2008, 35(12): 1819-1824. (in Chinese)
[11]梁宏伟, 王长忠, 李 忠, 罗相忠, 邹 桂. 聚丙烯酰胺凝胶快速、高效银染方法的建立. 遗传, 2008, 30(10): 1379-1382.
Liang H W, Wang C Z, Li Z, Luo X Z, Zou G. Improvement of the silver-stained technique of polyacrylamide gel electrophoresis. Hereditas, 2008, 30(10): 1379-1382. (in Chinese)
[12]Mouardov A, Cermer F, Couplnad G. Control of flowering time: interacting pathways as a basis for diversity. The Plant cell, 2002, 74: 5111-5130.
[13]Boss P K, Bastow R M, Mylne J S, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell, 2004, 16: 518-531.
[14]Hayama R, Agashe B, Luley E, Yano M, Shimamoto K. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in pharbitis. The Plant Cell, 2007, 19: 2988-3000.
[15]Park E, Kim J, Lee Y, Shin J, Oh E, Chung W I, Liu J R, Choi G. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiology, 2004, 45: 968-997.
[16]Takano M, Inagaki N, Xie X, Yuzurihara N, Nishimura M, Miyao A, Hirochika H. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell, 2005, 17: 3311-3325.
[17]Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell, 1998, 95: 657-667.
[18]Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail P H. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305: 1937-1941.
[19]Kost B, Lemichez E, Pius S, Hong Y, Tolias K, Carpenter C, Chua N H. Rac Homologues and compartmentalized sphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. The Journal of Cell Biology, 1999, 145: 317-330.
[20]Deborah P D, Julie R P, Andrawis A, Devid M S. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Molecular and General Genetics, 1995, 248: 43-51.
[21]Aline H V, Peter K H, Jonathan C. Plant GTPases: the Rhos in bloom. Trends in Cell Biology, 2000, 10: 141-146.
[22]林桂玉, 郑成淑, 孙宪芝, 王文莉. 光周期对菊花花芽分化和内源激素的影响. 山东农业科学, 2008(1): 35-39.
Lin G Y, Zheng C S, Sun X Z, Wang W L. Effects of photoperiod on floral bud differentiation and contents of endogenous hormones in chrysanthemum. Shandong Agricultural Sciences, 2008(1): 35-39.(in Chinese)
[23]王文莉, 王秀峰, 郑成淑, 朱翠英, 林桂玉. A23187和EGTA对光周期诱导菊花成花及其过程中叶片Ca2+ 分布和碳水化合物的影. 应用生态学报, 2010, 21( 3): 675-682.
Wang W L, Wang X F, Zheng C S, Zhu C Y, Lin G Y. Effects of Ca2+-carrier A23187 and Ca2+-chelator EGTA on the flower formation of chrysanthemum under photoperiodic induction and the Ca2+ distribution and carbohydrate contents in leaves during the flower formation. Chinese Journal of Applied Ecology, 2010, 21(3): 675-682. (in Chinese)
[24]田素波, 郭春晓, 郑成淑. 光周期诱导植物成花的分子调控机制. 园艺学报, 2010, 37(2): 325-330.
Tian S B, Guo C X, Zheng C S. Molecular mechanism of controlling flower formation by photoperiod inducement in plants. Acta Horticulturae Sinica, 2010, 37(2): 325-330. (in Chinese)
[25]Jack T. New members of the floral organ identity AGAMOUS pathway. Trends in Plant Science, 2002, 7(7): 286-287.
[26]Chen X M, Liu J, Cheng Y L, Jia D X. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development, 2002, 129: 1085-1094.
[27]Xie G, West T P. Citric acid production by Aspergillus niger ATCC9142 from a treated ethanol fermentation co-product using solid-state fermentation. Letters in Applied Microbiology, 2009, 48: 639-644.
[28]Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 2001, 127: 252-261.
[29]He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb C J. Transformation of rice with the Arabidopsis floral regulator LFY causes early heading. Transgenic Research, 2000, 9: 223-227. |