中国农业科学 ›› 2021, Vol. 54 ›› Issue (16): 3514-3526.doi: 10.3864/j.issn.0578-1752.2021.16.013

• 园艺 • 上一篇    下一篇

基于表型性状构建传统菊花核心种质

李嘉伟(),苏江硕,张飞,房伟民,管志勇(),陈素梅,陈发棣   

  1. 南京农业大学园艺学院/作物遗传与种质创新国家重点实验室/农业农村部景观农业重点实验室,南京 210095
  • 收稿日期:2020-09-17 接受日期:2021-02-09 出版日期:2021-08-16 发布日期:2021-08-24
  • 通讯作者: 管志勇
  • 作者简介:李嘉伟,E-mail: 2018104101@njau.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFD1001500);江苏省现代农业产业技术体系建设项目(JATS[2020]281)

Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits

LI JiaWei(),SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong(),CHEN SuMei,CHEN FaDi   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs/College of Horticulture, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-09-17 Accepted:2021-02-09 Online:2021-08-16 Published:2021-08-24
  • Contact: ZhiYong GUAN

摘要:

【目的】探讨构建传统菊花品种核心种质的最优取样方法并构建核心种质,以便于传统菊花种质资源的收集与保存。【方法】以《中国菊花》专著中记载的2 249份传统菊花品种为材料,依据舌状花花色分为8组,采用逐步聚类法基于4种总体取样规模(5%、10%、15%、20%)和4种组内取样比例方法(简单比例、对数比例、平方根比例、多样性比例)构建了传统菊花备选核心种质16个,探讨最优的取样策略。筛选出最优取样策略后进一步比较2种组内取样方法(随机和聚类)的构建效果。对最优方法下建立的核心种质代表性进行检验,利用多个特征值(最小值、最大值、均值、标准差、变异系数、Shannon-Weaver遗传多样性指数)和评价参数(均值差异百分率(MD)、方差差异百分率(VD)、极差符合率(CR)、变异系数变化率(VR)和表型保留比例(RPR))综合地评价核心种质。【结果】传统菊花按照花色进行分组,各组品种呈现正态分布,能够确保取样的均匀性;对数比例法和多样性比例法都能够使每组的取样份数更加均衡,起到良好的修正作用,对数比例法下构建的核心种质各项参数值达到最大,是最优取样比例法;随着总体取样规模的增加,遗传多样性指数呈现先增大再减小的趋势,变异系数变化率不断减小,极差符合率和表型保留比例不断增大;当取样规模大于10%时,遗传多样性指数和变异系数变化率减小,而极差符合率和表型保留比例的升幅并不大,因此,构建传统菊花核心种质最适宜的总体取样规模为10%;聚类取样构建的备选核心种质各项参数值均大于随机取样构建的对应备选核心种质的参数值,以聚类取样方法构建的核心种质变异的丰富性和均匀程度更好。核心种质各特征值与原始种质表现一致,多个评价参数值表明核心种质的均度和丰度较好,充分体现了表型的遗传多样性。通过补充聚类丢失的“追抱”1个花抱性状和对花序高度、外层瓣长2个性状的完善,最终构建得到228个传统菊花品种的核心种质,占原始材料的10.14%。【结论】本研究基于2 249份传统菊花品种材料的15个表型性状,系统地比较了多种总体取样规模、组内取样比例方法、组内取样方法构建的备选核心种质后,确定了最佳的核心种质构建方法,并对核心种质的代表性进行了分析和验证,各特征值和评价参数表明本研究构建的核心种质是有效的,核心种质充分地代表了传统菊花原始种质的遗传多样性。

关键词: 传统菊花, 表型性状, 核心种质, 取样策略, 评价参数

Abstract:

【Objective】Exploring the optimal sampling method of constructing the core collection of traditional chrysanthemum varieties and the resulted core collection would help to facilitate the collection and preservation of traditional chrysanthemum germplasm resources.【Method】A collection of 2 249 traditional chrysanthemum germplasm resources, recorded in the monograph “Chinese Chrysanthemum”, were divided into eight groups according to ligulate floret color. Sixteen alternative core collections, resulted from stepwise clustering method of four overall sampling scale (5%, 10%, 15%, and 20%) and four group sampling ratio (simple ratio, logarithmic ratio, square root ratio, and diversity ratio), were compared to find the best sampling strategy for constructing core collection of traditional chrysanthemum. Consequently, the construction effects of two intra-group sampling methods (cluster and random) were further studied. The representativeness of the core collection established under the optimal method was comprehensively tested by both multiple characteristic values (minimum, maximum, mean, standard deviation, coefficient of variation, and diversity index) and evaluation parameters (percentage of mean difference, percentage of variance difference, range coincidence rate, variable rate of coefficient of variation, and phenotypic retention ratio). 【Result】According to flower color, each group showed a normal distribution, ensuring the uniformity of sampling; Both logarithmic ratio method and diversity ratio method could make the sampling number of each group more balanced, and had a corrective effect. The parameter values of the core collection constructed under the logarithmic ratio method reached the maximum, showing the optimal sampling ratio method. With the increase of the overall sampling size, the genetic diversity index showed a trend of increasing first and then decreasing, the variation rate of coefficient of variation continued decreasing, and the range of coincidence rate and phenotypic retention ratio continued increasing. When the sampling size was greater than 10%, the genetic diversity index and the variation rate of coefficient of variation decreased, while the range coincidence rate and phenotypic retention ratio increased slightly, it was concluded that the most suitable overall sampling size was 10%. The parameter values of the alternative core collection constructed by cluster sampling were larger than those by random sampling, indicating the better richness and uniformity of core collection by the cluster sampling method. The eigenvalues of the core collection were consistent with those of the original collection, and the several evaluation parameters showed the expected uniformity and abundance of the core collection, reflecting the phenotypic diversity. By supplementing the “chasing hug” trait lost by clustering and improving the two traits of inflorescence height and outer petal length, the core collection of 228 traditional chrysanthemum varieties was finally constructed, accounting for 10.14% of the original materials.【Conclusion】Based on 15 phenotypic traits of 2 249 traditional chrysanthemum varieties, the best core collection construction method was determined after systematic comparison of alternative core collections constructed by various overall sampling size, sampling ratio method and sampling method in the group, and the representativeness of the core collection was analyzed and verified. The eigenvalues and evaluation parameters showed that the core collection constructed in this study was effective and capable of representing the genetic diversity of the original traditional chrysanthemum collection.

Key words: traditional chrysanthemum, phenotypic traits, core collection, sampling strategy, evaluation parameter