中国农业科学 ›› 2018, Vol. 51 ›› Issue (22): 4373-4386.doi: 10.3864/j.issn.0578-1752.2018.22.015
刘宏祥(),徐文娟(
),朱春红,陶志云,宋卫涛,章双杰,李慧芳(
)
收稿日期:
2017-08-03
接受日期:
2018-09-12
出版日期:
2018-11-16
发布日期:
2018-11-16
基金资助:
LIU HongXiang(),XU WenJuan(
),ZHU ChunHong,TAO ZhiYun,SONG WeiTao,ZHANG ShuangJie,LI HuiFang(
)
Received:
2017-08-03
Accepted:
2018-09-12
Online:
2018-11-16
Published:
2018-11-16
摘要:
【目的】选择两个中国地方品种高邮鸭和金定鸭,对鸭胚胎发育中后期胸肌进行转录组分析研究,旨在探明胸肌发育阻滞的分子变化机制,为鸭骨骼肌调控机理研究打下基础。【方法】在21胚龄和27胚龄两个时间点,分别解剖高邮鸭、金定鸭各3只,采集胸大肌,提取总RNA构建文库,利用Illumina的HiseqTM2000进行高通量测序,并利用生物信息学方法进行差异表达基因挖掘、基因功能注释等分析,探讨21胚龄和27胚龄两个时间点之间胸肌发育阻滞的分子机制。【结果】高邮鸭、金定鸭21胚龄和27胚龄胸大肌组织RNA-seq质量Q20均在94%以上,Q30均在89%以上,测序得到的结果可靠,可用于后续分析。RNA水平相关性检查和基因mRNA表达量聚类图结果都表明,21胚龄(27胚龄)高邮鸭和金定鸭之间表达模式的相关性高于高邮鸭(金定鸭)21胚龄和27胚龄之间的表达模式。不同品种内时间点之间的差异基因数量(高邮鸭6 128个,金定鸭6 452个)远多于同一时间点不同品种间的差异基因数量(21胚龄522个,27胚龄299个)。qRT-PCR验证试验结果与RNA-seq分析结果相关性较强。通过GO和KEGG富集分析发现,高邮鸭、金定鸭胸肌在21胚龄到27胚龄阶段,能量代谢相关基因(主要为辅酶Q相关基因、ATP酶合成相关基因和细胞色素C相关基因)均显著上调,DNA复制和细胞周期相关基因(主要为微型染色体维持蛋白(MCM)相关基因、复制因子C(RFC)相关基因)均显著下调。相关基因表达的变化可能与此阶段成肌细胞增殖速度减慢,逐渐退出细胞周期开始准备下一阶段融合成多核肌管并形成肌纤维有关。对肌肉生长发育相关的关键基因分析发现,促进肌肉生长的IGF1和诱导成肌细胞末端分化的MyoG显著下调,促进肌纤维分化融合的MUSTN1基因、诱导肌祖细胞向成肌细胞转化的MyoD1基因显著上调。【结论】鸭胚胎中后期胸肌发育过程中大量基因差异表达。其中能量代谢相关基因的上调和DNA复制、细胞周期相关基因的下调,以及肌肉发育相关基因MUSTN1显著上调,IGF1、MyoG等显著下调,可能与鸭胚胎中后期胸肌发育阻滞现象密切相关。
刘宏祥,徐文娟,朱春红,陶志云,宋卫涛,章双杰,李慧芳. 鸭胚胎发育中后期胸肌发育阻滞的RNA-seq分析[J]. 中国农业科学, 2018, 51(22): 4373-4386.
LIU HongXiang,XU WenJuan,ZHU ChunHong,TAO ZhiYun,SONG WeiTao,ZHANG ShuangJie,LI HuiFang. RNA-seq Analysis on Development Arrest of Duck Pectoralis Muscle During Semi-Late Embryonic Period[J]. Scientia Agricultura Sinica, 2018, 51(22): 4373-4386.
表1
用于qRT-PCR验证的基因及其引物"
基因 Gene | 上游引物 Up-primer | 下游引物 Lower-primer | 产物长度 Product length (bp) | 退火温度 Temperature (℃) |
---|---|---|---|---|
F16P1 | CCCTAAAGGAAAGCTGAGAC | CTCGGGCACTATATCCAGTA | 115 | 60 |
COL1A1 | GCCAACGAAATCGAGATCAG | CGTCTTTGTCGTCTTGTACT | 126 | 60 |
WIPI1 | GAAATCCCAGATGTTTACATCG | TCCGTCCCTTTCTTGAAGT | 113 | 60 |
ARMC3 | TTGGCATTGGCTGTAGTTTAG | TACTCTTGAGGAGGAAGCAGAA | 115 | 60 |
CEA20 | TCTCCGAGCCAGAAATCC | TCTTCCACCAGTACACGTC | 105 | 60 |
GLIS3 | ATGACGCAGAGACAAACT | TTGTGTTGTACGTTCTTCTGAG | 188 | 60 |
SRSF4 | CTCTTACTCCAGAAGCCGA | GATCTACTCTTGGAGCGAC | 105 | 60 |
LAMC3 | GAGGCCCAGAAGAAGATCA | ACAACCTGTGCCCTCTTA | 131 | 60 |
TNNI1 | CTGCACGAGAAGGTTGAG | GCAGGTCAAGCACTTTGAT | 109 | 60 |
TNNT2 | TCTCCAACATGCTGCATT | CTGAGGTGGTCGATGTTC | 130 | 60 |
TNNC1 | ATGCTGCTTTAACTGGAATG | CACCACAGGGTGGAAATC | 179 | 60 |
MYOZ1 | CAGAAGATTCAGTCTCACAAGT | AGGTCTTTATCCAAGCCAC | 103 | 60 |
MYBPH | TCATGGGCAACACCTACTC | GGATCTTCTCTGGCTGGTAA | 129 | 60 |
COEA1 | CTTCCTGCCAGCAATTAC | AGCCAAACACTTCCATCATA | 134 | 60 |
KCRS | GACCAGTGCATCCAAACC | TCTCAGCAAACACCTCGTAG | 103 | 60 |
DEP1A | ATCTGTTGTTTGTTGCTTCC | TGTATCATCAAAGAGCGTGTG | 134 | 60 |
ACTB* | TGAGAGTAGCCCCTGAGGAGCAC | TAACACCATCACCAGACTCCATCAC | 198 | 60 |
GAPDH* | CTTCGGAATAGGGAGGAGAC | CGGAGATGATGACACGCTTA | 131 | 60 |
表3
Reads与参考基因组比对情况"
项目 Statistical content | 品种 Breeds | 21胚龄 21 ed | 27胚龄 27 ed | ||
---|---|---|---|---|---|
数量 Number | 百分比 Percentage | 数量 Number | 百分比 Percentage | ||
总读段数 Total reads | 高邮鸭/GY | 43570695 | - | 50059412 | - |
金定鸭/JD | 49264929 | - | 46361619 | - | |
总比对数 Total mapped | 高邮鸭/GY | 26927881 | 61.80 | 29480876 | 58.89 |
金定鸭/JD | 31722102 | 64.39 | 27119296 | 58.50 | |
多次比对数 Multiple mapped | 高邮鸭/GY | 560376 | 1.29 | 668497 | 1.33 |
金定鸭/JD | 636927 | 1.29 | 603064 | 1.30 | |
唯一比对数 Uniquely mapped | 高邮鸭/GY | 26367505 | 60.51 | 28812378 | 57.56 |
金定鸭/JD | 31085175 | 63.10 | 26516232 | 57.19 |
表4
不同胚龄胸大肌RPKM值"
品种 Breeds | RPKM值 RPKM value | 0-1 | 1-3 | 3-15 | 15-60 | > 60 | 总计 Total |
---|---|---|---|---|---|---|---|
高邮鸭 GY | 21胚龄 21 ed | 5197(27.22%) | 2114(11.07%) | 5245(27.47%) | 4711(24.67%) | 1828(9.57%) | 19095 |
27胚龄 27 ed | 5757(30.15%) | 2186(11.45%) | 5053(26.46%) | 4310(22.57%) | 1789(9.37%) | 19095 | |
金定鸭 JD | 21胚龄 21 ed | 5144(26.93%) | 2152(11.27%) | 5254(27.51%) | 4744(24.84%) | 1802(9.44%) | 19095 |
27胚龄 27 ed | 5884(30.81%) | 2166(11.34%) | 4894(25.63%) | 4356(22.81%) | 1796(9.40%) | 19095 |
表5
qRT-PCR实验得到的基因表达??Ct值与RPKM比值之间的相关"
基因名 Gene symbol | 相关系数 Correlation coefficient | 描述 Description |
---|---|---|
F16P1 | 0.81 | 果糖-1,6-二磷酸酶1 Fructose-1,6-bisphosphatase 1 |
COL1A1 | 0.79 | 胶原蛋白α-1(I)链 Collagen alpha-1(I) chain |
WIPI1 | 0.87 | WD重复区域磷酸肌醇互作蛋白1 WD repeat domain phosphoinositide-interacting protein 1 |
ARMC3 | 0.88 | Armadillo重复蛋白3 Armadillo repeat-containing protein 3 |
CEA20 | 0.89 | 癌胚抗原相关细胞粘附因子20 Carcinoembryonic antigen-related cell adhesion molecule 20 |
GLIS3 | 0.75 | 锌指蛋白GLIS3 Zinc finger protein GLIS3 |
SRSF4 | 0.79 | 富含丝氨酸/精氨酸剪切因子 Serine/arginine-rich splicing factor 4 |
LAMC3 | 0.82 | 层连蛋白亚基γ3 Laminin subunit gamma-3 |
TNNI1 | 0.96 | 慢肌中肌钙蛋白1 Troponin 1, slow skeletal muscle |
TNNT2 | 0.81 | 心肌型肌钙蛋白2 Troponin T2, Cardiac Type |
TNNC1 | 0.70 | 慢肌和心肌中肌钙蛋白C Troponin C, slow skeletal and cardiac muscles |
MYOZ1 | 0.76 | Myozenin蛋白1 Myozenin-1 |
MYBPH | 0.72 | Myosin结合蛋白H Myosin-binding protein H |
COEA1 | 0.87 | 胶原蛋白α-1(XIV)链 Collagen alpha-1(XIV) chain |
KCRS | 0.82 | 线粒体中S型肌酸激酶 Creatine kinase S-type, mitochondrial |
DEP1A | 0.75 | 含DEP区域蛋白1A DEP domain-containing protein 1A |
表6
骨骼肌相关基因mRNA表达水平变化"
基因登录号 GeneID | 基因名 Gene symbol | 比较对象 Objects compared | 前一时间 Before | 后一时间 After | log2(差异倍数) log2(FoldChange) | 校正p值 padj | 原始p值 pval | 上/下调 Up or down |
---|---|---|---|---|---|---|---|---|
ENSAPLG00000010676 | IGF1 | 高邮鸭21、27胚龄 GY21v27 | 95.09 | 25.38 | -1.91 | 1.41E-07 | 1.23E-08 | 下调Down |
金定鸭21、27胚龄 JD21v27 | 95.24 | 25.00 | -1.93 | 2.02E-07 | 1.91E-08 | 下调Down | ||
ENSAPLG00000004095 | MUSTN1 | 高邮鸭21、27胚龄 GY21v27 | 2652.05 | 19892.66 | 2.91 | 6.81E-11 | 3.73E-12 | 上调Up |
金定鸭21、27胚龄 JD21v27 | 2066.24 | 11844.22 | 2.52 | 1.86E-33 | 1.78E-35 | 上调Up | ||
ENSAPLG00000012230 | MSTN | 高邮鸭21、27胚龄 GY21v27 | 1281.81 | 825.70 | -0.63 | 0.53 | 0.34 | 下调Down |
金定鸭21、27胚龄 JD21v27 | 967.86 | 483.89 | -1.00 | 0.08 | 0.03 | 下调Down | ||
ENSAPLG00000005673 | MyoD1 | 高邮鸭21、27胚龄 GY21v27 | 3800.16 | 6924.07 | 0.87 | 3.39E-04 | 5.70E-05 | 上调Up |
金定鸭21、27胚龄 JD21v27 | 4074.60 | 6240.65 | 0.62 | 0.01 | 2.65E-03 | 上调Up | ||
ENSAPLG00000001996 | MyoG | 高邮鸭21、27胚龄 GY21v27 | 870.47 | 23.75 | -5.20 | 1.39E-100 | 9.27E-104 | 下调Down |
金定鸭21、27胚龄 JD21v27 | 864.99 | 51.91 | -4.06 | 2.58E-73 | 5.01E-76 | 下调Down |
图4
高邮鸭及金定鸭21胚龄和27胚龄mRNA差异表达基因GO功能分类图 B1:细胞成分运动(cellular component movement),B2:基于微管的过程(microtubule-based process),B3:基于微管的运动(microtubule-based movement),B4:细胞周期(cell cycle),B5:分解代谢过程的正向调控(positive regulation of catabolic process),B6:自噬调控(regulation of autophagy),B7:自噬正调控(positive regulation of autophagy),B8:细胞膜组织(cellular membrane organization),B9:(evasion or tolerance of host defenses by virus),B10:细胞分解过程的正向调控(positive regulation of cellular catabolic process),B11:宿主防御逃逸(avoidance of host defenses),B12:宿主防御回避或耐受(evasion or tolerance of host defenses),B13:其它共生互作生物的防御逃逸avoidance of defenses of other organism involved in symbiotic interaction),B14:其他共生互作生物的防御回避或耐受(evasion or tolerance of defenses of other organism involved in symbiotic interaction),B15:其他共生互作生物的防御响应(response to defenses of other organism involved in symbiotic interaction),B16:对宿主防御的响应(response to host defenses),B17:对宿主的响应(response to host) C1:线粒体(mitochondrion),C2:核糖体(ribosome),C3:核糖核蛋白复合物(ribonucleoprotein complex),C4:细胞外基质(extracellular matrix),C5:大分子复合物(macromolecular complex),C6:非膜结合细胞器(non-membrane-bounded organelle),C7:胞内非膜结合细胞器(intracellular non-membrane-bounded organelle) M1:核糖体结构成分(structural constituent of ribosome),M2:肌动活性(motor activity),M3:微管肌动活性(microtubule motor activity),M4:结构分子活性(structural molecule activity),M5:微管结合(microtubule binding),M6:细胞支架蛋白结合(cytoskeletal protein binding),M7:DNA依赖的ATP酶活性(DNA-dependent ATPase activity),M8:微管蛋白结合(tubulin binding),M9:焦磷酸酶活性(pyrophosphatase activity),M10:氧化还原酶活性(oxidoreductase activity),M11:作用于酸酐的水解酶活性(hydrolase activity, acting on acid anhydrides),M12:作用于含磷酸酐的水解酶活性(hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides),M13:核苷三磷酸酶活性(nucleoside-triphosphatase activity)"
表7
高邮鸭、金定鸭21胚龄和27胚龄之间显著富集的共有GO分类"
GO类型 GO type | GO条目号 GO terms | GO描述 GO description | 标记 Mark | 共有基因数 Number of shared genes | 上/下调 Up or down |
---|---|---|---|---|---|
生物过程 Biological process | GO:0007018 | 基于微管的运动 microtubule-based movement | B3 | 24 | 下调Down |
GO:0007049 | 细胞周期 cell cycle | B4 | 86 | 下调Down | |
细胞组分 Cellular component | GO:0005739 | 线粒体 mitochondrion | C1 | 53 | 上调Up |
GO:0031012 | 细胞外基质 extracellular matrix | C4 | 57 | 下调Down | |
GO:0043228 | 无膜细胞器 non-membrane-bounded organelle | C6 | 161 | 下调Down | |
GO:0043232 | 细胞内无膜细胞器 intracellular non-membrane-bounded organelle | C7 | 161 | 下调Down | |
分子功能 Molecular function | GO:0003774 | 马达运动 motor activity | M2 | 48 | 下调Down |
GO:0003777 | 微管马达运动 microtubule motor activity | M3 | 24 | 下调Down | |
GO:0005198 | 结构分子活性 structural molecule activity | M4 | 137 | 下调Down | |
GO:0008017 | 微管结合 microtubule binding | M5 | 25 | 下调Down | |
GO:0008094 | DNA依赖的ATP酶活性 DNA-dependent ATPase activity | M7 | 17 | 下调Down | |
GO:0015631 | 微管蛋白结合 tubulin binding | M8 | 26 | 下调Down | |
GO:0016817 | 作用于酸酐的水解酶活性hydrolase activity, acting on acid anhydrides | M11 | 178 | 下调Down |
图5
高邮鸭及金定鸭21胚龄和27胚龄mRNA差异表达基因KEGG功能分类图 Term2:柠檬酸循环(三羧酸循环)(Citrate cycle (TCA cycle)),Term6:氧化磷酸化(Oxidative phosphorylation),Term7:缬氨酸、亮氨酸和异亮氨酸降解(Valine, leucine and isoleucine degradation),Term9:碳新陈代谢(Carbon metabolism),Term11:核糖体(Ribosome),Term12:DNA复制(DNA replication),Term14:PPAR信号途径(PPAR signaling pathway),Term15:细胞周期(Cell cycle),Term17:ECM受体互作(ECM-receptor interaction),Term18:间隙连接(Gap junction)"
表8
高邮鸭、金定鸭21胚龄和27胚龄之间显著富集的共有KEGG通路"
KEGG通路 KEGG pathway | KEGG描述 KEGG description | 标记 Mark | 共有基因数 Number of shared genes | 上/下调 Up or down |
---|---|---|---|---|
apla00020 | 三羧酸循环(TCA循环) Citrate cycle (TCA cycle) | Term2 | 17 | 上调Up |
apla00190 | 氧化磷酸化 Oxidative phosphorylation | Term6 | 64 | 上调Up |
apla01200 | 碳的代谢 Carbon metabolism | Term9 | 34 | 上调Up |
apla03030 | DNA复制 DNA replication | Term12 | 16 | 下调Down |
apla04110 | 细胞周期 Cell cycle | Term15 | 36 | 下调Down |
表9
GO与KEGG联合分析后的共有基因"
基因名 Gene name | 基因描述 Gene description | Ensembl No. | 上/下调 Up or down | 基因名 Gene name | 基因描述 Gene description | Ensembl No. | 上/下调 Up or down | |
---|---|---|---|---|---|---|---|---|
ATP5F1 | ATP合成酶:H+转运线粒体Fo复合物亚基5F1 ATP synthase, H+ transporting, mitochondrial Fo complex subunit 5F1 | ENSAPLG00000013428 | 上调 Up | ANAPC2 | (细胞分裂)后期启动复合物亚基2 Anaphase promoting complex subunit 2 | ENSAPLG00000001836 | 下调Down | |
ATP5H | ATP合成酶:H+转运线粒体Fo复合物亚基5H ATP synthase, H+ transporting, mitochondrial Fo complex subunit 5H | ENSAPLG00000006404 | 上调 Up | DNA2 | DNA复制解螺旋/核酸酶2 DNA replication helicase/nuclease 2 | ENSAPLG00000015576 | 下调Down | |
ATP5J | ATP合成酶:H+转运线粒体Fo复合物亚基5J ATP synthase, H+ transporting, mitochondrial Fo complex subunit 5J | ENSAPLG00000009600 | 上调 Up | FEN1 | Flap结构特异性核酸内切酶1 Flap structure-specific endonuclease 1 | ENSAPLG00000001725 | 下调Down | |
COX5A | 细胞色素c氧化酶亚基5A Cytochrome c oxidase subunit 5A | ENSAPLG00000014886 | 上调 Up | MAD1L1 | MAD1有丝分裂阻滞缺陷类似物1 MAD1 mitotic arrest deficient like 1 | ENSAPLG00000015788 | 下调Down | |
COX7A2L | 细胞色素c氧化酶亚基类7A2 Cytochrome c oxidase subunit 7A2 like | ENSAPLG00000012898 | 上调 Up | MCM2 | 微型染色体维持复合物组分2 Minichromosome maintenance complex component 2 | ENSAPLG00000004520 | 下调Down | |
LOC101800937 | 线粒体中细胞色素c氧化酶亚基7B Cytochrome c oxidase subunit 7B, mitochondrial | ENSAPLG00000007286 | 上调 Up | MCM3 | 微型染色体维持复合物组分3 Minichromosome maintenance complex component 3 | ENSAPLG00000013058 | 下调Down | |
NDUFA5 | NADH:泛醌氧化还原酶亚基A5 NADH: Ubiquinone oxidoreductase subunit A5 | ENSAPLG00000014770 | 上调 Up | MCM4 | 微型染色体维持复合物组分4 Minichromosome maintenance complex component 4 | ENSAPLG00000003491 | 下调 Down | |
NDUFA7 | NADH:泛醌氧化还原酶亚基A7 NADH: Ubiquinone oxidoreductase subunit A7 | ENSAPLG00000011378 | 上调 Up | MCM5 | 微型染色体维持复合物组分5 Minichromosome maintenance complex component 5 | ENSAPLG00000007931 | 下调 Down | |
NDUFB1 | NADH:泛醌氧化还原酶亚基B1 NADH: Ubiquinone oxidoreductase subunit B1 | ENSAPLG00000006000 | 上调 Up | ORC5 | 起点识别复合物亚基5 Origin recognition complex subunit 5 | ENSAPLG00000002905 | 下调 Down | |
NDUFB3 | NADH:泛醌氧化还原酶亚基B3 NADH: Ubiquinone oxidoreductase subunit B3 | ENSAPLG00000015508 | 上调 Up | POLE | DNA聚合酶ε催化亚基 DNA polymerase epsilon, catalytic subunit | ENSAPLG00000009950 | 下调 Down | |
NDUFB4 | NADH:泛醌氧化还原酶亚基B4 NADH: Ubiquinone oxidoreductase subunit B4 | ENSAPLG00000007537 | 上调 Up | RB1 | RB转录共阻遏因子1 RB transcriptional corepressor 1 | ENSAPLG00000007734 | 下调 Down | |
NDUFB8 | NADH:泛醌氧化还原酶亚基B8 NADH: Ubiquinone oxidoreductase subunit B8 | ENSAPLG00000015152 | 上调 Up | RFC1 | 复制因子C亚基1 Replication factor C subunit 1 | ENSAPLG00000010594 | 下调 Down | |
NDUFC2 | NADH:泛醌氧化还原酶亚基C2 NADH: Ubiquinone oxidoreductase subunit C2 | ENSAPLG00000006009 | 上调 Up | RFC2 | 复制因子C亚基2 Replication factor C subunit 2 | ENSAPLG00000009389 | 下调 Down | |
NDUFS6 | NADH:泛醌氧化还原酶亚基S6 NADH: Ubiquinone oxidoreductase subunit S6 | ENSAPLG00000014333 | 上调 Up | TFDP1 | 转录因子Dp-1 Transcription factor Dp-1 | ENSAPLG00000014438 | 下调 Down | |
SDHD | 琥珀酸盐脱氢酶复合物亚基D Succinate dehydrogenase complex subunit D | ENSAPLG00000005936 | 上调 Up | YWHAZ | 酪氨酸3-单氧酶/色氨酸5-单氧酶活化蛋白ζ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta | ENSAPLG00000002635 | 下调 Down | |
UQCRB | 泛醌-细胞色素c还原酶结合蛋白 Ubiquinol-cytochrome c reductase binding protein | ENSAPLG00000012746 | 上调 Up |
[1] |
SMITH J H . Relation of body size to muscle cell size and number in the chicken. Poultry Science, 1963,42(2):283-290.
doi: 10.3382/ps.0420283 |
[2] |
PICARD B, LEFAUCHEUR L, BERRI C, DUCLOS M J . Muscle fibre ontogenesis in farm animal species. Reproduction Nutrition Development, 2002,42(5):415-431.
doi: 10.1051/rnd:2002035 |
[3] | REHFELDT C, STICKLAND N C, FIEDLER I, WEGNER J . Environmental and genetic factors as sources of variation in skeletal muscle fibre number. Basic and Applied Myology, 1999,9(5):235-254. |
[4] |
SWATLAND H J . Muscle growth in the fetal and neonatal pig. Journal of Animal Science, 1973,37(2):536-545.
doi: 10.2527/jas1973.372536x pmid: 4748487 |
[5] |
MOORE D T, FERKET P R, MOZDZIAK P E . Muscle development in the late embryonic and early post-hatch poult. International Journal of Poultry Science, 2005,4(3):138-142.
doi: 10.3923/ijps.2005.138.142 |
[6] |
CHEN W, TANGARA M, XU J, PENG J . Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates. Experimental Physiology, 2012,97(7):861-872.
doi: 10.1113/expphysiol.2011.01083.x pmid: 22787243 |
[7] |
GU L H, XU T S, HUANG W, XIE M, SHI W B, SUN S D, HOU S S . Developmental characteristics of pectoralis muscle in Pekin duck embryos. Genetics and Molecular Research, 2013,12(4):6733-6742.
doi: 10.4238/2013.December.13.6 pmid: 24391014 |
[8] |
胡艳, 刘宏祥, 单艳菊, 姬改革, 束婧婷, 徐文娟, 朱春红, 陶志云, 李慧芳 . 鸭发育早期骨骼肌异步发育和IGF-1/MSTN-A表达的相关性. 中国农业科学, 2016,49(2):361-370.
doi: 10.3864/j.issn.0578-1752.2016.02.016 |
HU Y, LIU H X, SHAN Y J, JI G G, SHU J T, XU W J, ZHU C H, TAO Z Y, LI H F . Correlation of the relative levels of insulin-like growth factor-1 and myostatin mRNA expression and asynchronous development of skeletal muscle development in ducks during early development. Scientia Agricultura Sinica, 2016,49(2):361-370. (in Chinese).
doi: 10.3864/j.issn.0578-1752.2016.02.016 |
|
[9] |
HUANG Y, LI Y, BURT D W, CHEN H, ZHANG Y, QIAN W, KIM H, GAN S, ZHAO Y, LI J, YI K . The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013,45(7):776-783.
doi: 10.1038/ng.2657 pmid: 4003391 |
[10] |
TRAPNELL C, PACHTER L, SALZBERG S L . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009,25(9):1105-1111.
doi: 10.1093/bioinformatics/btp120 pmid: 19289445 |
[11] |
BENJAMINI Y, HOCHBERG Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 1995,57(1):289-300.
doi: 10.2307/2346101 |
[12] |
YOUGN M D, WAKEFIELD M J, SMYTH G K, OSHLACK A . Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 2010,11(2):R14.
doi: 10.1186/gb-2010-11-2-r14 pmid: 20132535 |
[13] |
HU Y, LIU H X, SONG C, XU W J, JI G G, ZHU C H, SHU J T, LI H F . Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development. Gene, 2015,559(1):38-43.
doi: 10.1016/j.gene.2015.01.009 pmid: 25577952 |
[14] |
GUERNEC A, BERRI C, CHEVALIER B, WACRENIER N, LE BIHAN-DUVAL E, DUCLOS M . Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield. Growth Hormone & IGF Research, 2003,13(1):8-18.
doi: 10.1016/S1096-6374(02)00136-3 pmid: 12550077 |
[15] |
ECHTAY K S, WINKLER E, KLINGENBERG M . Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature, 2000,408(6812):609-613.
doi: 10.1038/35046114 pmid: 11117751 |
[16] |
TURUNEN M, OLSSON J, DALLNER G . Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta, 2004,1660(1-2):171-199.
doi: 10.1016/j.bbamem.2003.11.012 pmid: 14757233 |
[17] |
NISHITANI H, LYGEROU Z . Control of DNA replication licensing in a cell cycle. Genes to Cells Devoted to Molecular & Cellular Mechanisms, 2002,7(6):523-534.
doi: 10.1046/j.1365-2443.2002.00544.x pmid: 12059957 |
[18] |
KEARSEY S E, LABIB K . MCM proteins: Evolution, properties, and role in DNA replication. Biochimica et Biophysica Acta, 1998,1398(2):113-136.
doi: 10.1016/S0167-4781(98)00033-5 |
[19] |
TYE B K . MCM proteins in DNA replication. Annual Review of Biochemistry, 1999,68(68):649-686.
doi: 10.1146/annurev.biochem.68.1.649 |
[20] |
ALLEN B L, UHLMANN F, GAUR L K, MULDER B A, POSEY K L, JONES L B, HARDIN S H . DNA recognition properties of the N-terminal DNA binding domain within the large subunit of replication factor C. Nucleic Acids Research, 1998,26(17):3877-3882.
doi: 10.1093/nar/26.17.3877 |
[21] |
UHLMANN F, GIBBS E, CAI J, O’DONNELL M, HURWITZ J . Identification of regions within the four small subunits of human replication factor C required for complex formation and DNA replication. Journal of Biological Chemistry, 1997,272(15):10065-10071.
doi: 10.1074/jbc.272.15.10065 pmid: 9092550 |
[22] |
ZHANG G, GIBBS E, KELMAN Z, DONNELL M O, HURWITZ J . Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(5):1869-1874.
doi: 10.1073/pnas.96.5.1869 pmid: 10051561 |
[23] |
RAI M, KATTI P, NONGTHOMBA U . Spatio-temporal coordination of cell cycle exit, fusion and differentiation of adult muscle precursors by Drosophila Erect wing (Ewg). Mechanisms of Development, 2016,141:109-118.
doi: 10.1016/j.mod.2016.03.004 pmid: 27039019 |
[24] |
LIU H H, WANG J W, LI L, HAN C C, HUANG K L, SI J M, HE H, XU F . Molecular evolutionary analysis of the duck MYOD gene family and its differential expression pattern in breast muscle development. British Poultry Science, 2011,52(4):423-431.
doi: 10.1080/00071668.2011.590795 pmid: 21919569 |
[25] |
BUCKINGHAM M, BAJARD L, CHANG T, DAUBAS P, HADCHOUEL J, MEILHAC S, MONTARRAS D, ROCANCOURT D, RELAIX F . The formation of skeletal muscle: from somite to limb. Journal of Anatomy, 2003,202(1):59-68.
doi: 10.1046/j.1469-7580.2003.00139.x pmid: 12587921 |
[26] |
SCHIAFFINO S, MAMMUCARI C . Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skeletal Muscle, 2011,1(1):4.
doi: 10.1186/2044-5040-1-4 pmid: 21798082 |
[27] |
DELLING U, TURECKOVA J, LIM H W, de WINDT L J, ROTWEIN P, MOLKENTIN J D . A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Molecular and Cellular Biology, 2000,20(17):6600-6611.
doi: 10.1128/MCB.20.17.6600-6611.2000 pmid: 86143 |
[28] |
LIU C, GERSCH R P, HAWKE T J, HADJIARGYROU . Silencing of Mustn1 inhibits myogenic fusion and differentiation. American Journal of Physiology. Cell Physiology, 2010,298(5):C1100-C1108.
doi: 10.1152/ajpcell.00553.2009 pmid: 20130207 |
[29] |
XU T S, GU L H, SUN Y, ZHANG X H, YE B G, LIU X L, HOU S S . Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Genetics and Molecular Research, 2015,14(2):4448-4460.
doi: 10.4238/2015.May.4.2 pmid: 25966217 |
[30] |
GOLDHAMER D, FAERMAN A, SHANI M, EMERSON C . Regulatory elements that control the lineage-specific expression of myoD. Science, 1992,256(5056):538-542.
doi: 10.1126/science.1315077 pmid: 1315077 |
[31] | BERKES C A, TAPSCOTT S J . MyoD and the transcriptional control of myogenesis. Seminars in Cell & Developmental Biology, 2005,16(4-5):585-595. |
[32] |
CHOI J, COSTA M L, MERMELSTEIN C S, CHAGAS C, HOLTZER S, HOLTZER H . MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proceedings of the National Academy of Sciences of the United States of America, 1990,87(20):7988-7992.
doi: 10.1073/pnas.87.20.7988 pmid: 2172969 |
[33] |
DAVIS R L, WEINTRAUB H, LASSAR A B . Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987,51(6):987-1000.
doi: 10.1016/0092-8674(87)90585-X pmid: 3690668 |
[34] |
WEINTRAUB H, TAPSCOTT S J, DAVIS R L, THAYER M J, ADAM M A, LASSAR A B, MILLER A D . Activation of muscle- specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(14):5434-5438.
doi: 10.1073/pnas.86.14.5434 pmid: 2748593 |
[35] |
HASTY P, BRADLEY A, MORRIS J H, EDMONDSON D G, VENUTI J M, OLSON E N, KLEIN W H . Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993,364(6437):501-506.
doi: 10.1038/364501a0 |
[36] |
NABESHIMA Y, HANAOKA K, HAYASAKA M, ESUML E, LI S W, NONAKA I, NABESHIMA Y . Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 1993,364(6437):532-535.
doi: 10.1038/364532a0 |
[37] | ARIAS A M, STEWART A. Molecular principles of animal development. Oxford, UK: Oxford University Press, 2002. |
[38] |
KAMBADUR R, SHARMA M, SMITH T . Mutations in myostatin (GDF8) in double muscled Belgian Blue and Piedmon tese cattle. Genome Research, 1997,7(9):910-916.
doi: 10.1101/gr.7.9.910 |
[39] |
MCPHERRON A C, LEE S J . Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(23):12457-12461.
doi: 10.1073/pnas.94.23.12457 pmid: 9356471 |
[40] |
GROBET L, MARTIN L, PONCELET D, PIROTTIN D, BROUWERS B, RIQUET J, SCHOEBERLEIN A, DUNNER S, MENISSIER F, MASSABANDA J, FRIES R, HANSET R, GEORGES M . A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997,17(1):71-74.
doi: 10.1038/ng0997-71 |
[41] |
MCPHERRON A C, LAWLER A M, LEE S J . Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature, 1997,387(6628):83-90.
doi: 10.1038/387083a0 |
[42] |
CAMPOREZ J P G, PETERSEN M C, ABUDUKADIER A, MOREIRA G V, JURCZAK M J, FRIEDMAN G, HAQQ C M, PETERSEN K F, SHULMAN G I . Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(8):2212-2217.
doi: 10.1073/pnas.1525795113 pmid: 26858428 |
[43] |
WHITTEMORE L-A, SONG K N, Li X P, AGHAJANIAN J, DAVIES M, GIRGENRATH S, HILL J J, JALENAK M, KELLEY P, KNIGHT A, MAYLOR R, O'HARA D, PEARSON A, QUAZI A, RYERSON S, TAN X Y, TOMKINSON K N, VELDMAN G M, WIDOM A, WRIGHT J F, WUDYKA S, ZHAO L, WOLFMAN N M . Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochemical & Biophysical Research Communications, 2003,300(4):965-971.
doi: 10.1016/S0006-291X(02)02953-4 pmid: 12559968 |
[1] | 吴艳,张昊,梁振华,潘爱銮,申杰,蒲跃进,黄涛,皮劲松,杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(8): 1657-1666. |
[2] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[3] | 张亚男,金永燕,庄智威,王爽,夏伟光,阮栋,陈伟,郑春田. 鸡蛋与鸭蛋的蛋壳力学特性、超微结构及蛋壳组分的比较[J]. 中国农业科学, 2022, 55(24): 4957-4968. |
[4] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[5] | 赵冬敏,黄欣梅,章丽娇,刘青涛,杨婧,韩凯凯,刘宇卓,李银. 坦布苏病毒感染诱导雏鸭体内未折叠蛋白反应[J]. 中国农业科学, 2021, 54(4): 855-863. |
[6] | 刘娇,陈志敏,郑爱娟,刘国华,蔡辉益,常文环. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
[7] | 岳盈肖,何近刚,赵江丽,闫子茹,程玉豆,武肖琦,王永霞,关军锋. 窖藏和冷藏条件下鸭梨挥发性物质及其相关基因表达分析[J]. 中国农业科学, 2021, 54(21): 4635-4649. |
[8] | 刘锴,何闪闪,张彩霞,张利义,卞书迅,袁高鹏,李武兴,康立群,丛佩华,韩晓蕾. 苹果叶片不定芽再生过程的差异表达基因鉴定与分析[J]. 中国农业科学, 2021, 54(16): 3488-3501. |
[9] | 龙琴,杜美霞,龙俊宏,何永睿,邹修平,陈善春. 转录因子CsWRKY61对柑橘溃疡病抗性的影响[J]. 中国农业科学, 2020, 53(8): 1556-1571. |
[10] | 柳艳霞,王振宇,郑晓春,朱瑶迪,陈丽,张德权. 基于品质指标预测北京烤鸭的中心温度[J]. 中国农业科学, 2020, 53(8): 1655-1663. |
[11] | 崔家杰,谢强,翟双双,龚涛,朱勇文,杨琳,王文策. 光照强度对樱桃谷肉鸭c-fos、生物钟基因表达 及褪黑激素的影响[J]. 中国农业科学, 2020, 53(4): 848-856. |
[12] | 王梓宇,张引引,李月圆,李玲,尤玲玲,李晓雁,晋朝,闫师杰. 漆酶LAC表达与鸭梨果心褐变的关系[J]. 中国农业科学, 2020, 53(24): 5073-5080. |
[13] | 陈柳,倪征,余斌,华炯钢,叶伟成,云涛,刘可姝,朱寅初,张存. 重组鸭瘟病毒载体中筛选高效表达鸭坦布苏病毒E蛋白启动子[J]. 中国农业科学, 2020, 53(24): 5125-5134. |
[14] | 杜艳民,王文辉,贾晓辉,佟伟,王阳,张鑫楠. 不同O2浓度对鸭梨采后生理代谢及贮藏品质的影响[J]. 中国农业科学, 2020, 53(23): 4918-4928. |
[15] | 吕楚阳,邓平川,张晓丽,孙钰超,梁五生,胡东维. 低温诱导稻曲病菌菌核形成的转录组学分析[J]. 中国农业科学, 2020, 53(22): 4571-4583. |
|