中国农业科学 ›› 2018, Vol. 51 ›› Issue (22): 4373-4386.doi: 10.3864/j.issn.0578-1752.2018.22.015

• 畜牧·兽医·资源昆虫 • 上一篇    下一篇

鸭胚胎发育中后期胸肌发育阻滞的RNA-seq分析

刘宏祥(),徐文娟(),朱春红,陶志云,宋卫涛,章双杰,李慧芳()   

  1. 江苏省家禽科学研究所,江苏扬州 225125
  • 收稿日期:2017-08-03 接受日期:2018-09-12 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    国家自然科学基金(31172194);江苏现代农业(水禽)产业技术体系建设专项资金(JATSI2018J225);江苏现代农业重点项目(BE2017349)

RNA-seq Analysis on Development Arrest of Duck Pectoralis Muscle During Semi-Late Embryonic Period

LIU HongXiang(),XU WenJuan(),ZHU ChunHong,TAO ZhiYun,SONG WeiTao,ZHANG ShuangJie,LI HuiFang()   

  1. Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu
  • Received:2017-08-03 Accepted:2018-09-12 Online:2018-11-16 Published:2018-11-16

摘要:

【目的】选择两个中国地方品种高邮鸭和金定鸭,对鸭胚胎发育中后期胸肌进行转录组分析研究,旨在探明胸肌发育阻滞的分子变化机制,为鸭骨骼肌调控机理研究打下基础。【方法】在21胚龄和27胚龄两个时间点,分别解剖高邮鸭、金定鸭各3只,采集胸大肌,提取总RNA构建文库,利用Illumina的HiseqTM2000进行高通量测序,并利用生物信息学方法进行差异表达基因挖掘、基因功能注释等分析,探讨21胚龄和27胚龄两个时间点之间胸肌发育阻滞的分子机制。【结果】高邮鸭、金定鸭21胚龄和27胚龄胸大肌组织RNA-seq质量Q20均在94%以上,Q30均在89%以上,测序得到的结果可靠,可用于后续分析。RNA水平相关性检查和基因mRNA表达量聚类图结果都表明,21胚龄(27胚龄)高邮鸭和金定鸭之间表达模式的相关性高于高邮鸭(金定鸭)21胚龄和27胚龄之间的表达模式。不同品种内时间点之间的差异基因数量(高邮鸭6 128个,金定鸭6 452个)远多于同一时间点不同品种间的差异基因数量(21胚龄522个,27胚龄299个)。qRT-PCR验证试验结果与RNA-seq分析结果相关性较强。通过GO和KEGG富集分析发现,高邮鸭、金定鸭胸肌在21胚龄到27胚龄阶段,能量代谢相关基因(主要为辅酶Q相关基因、ATP酶合成相关基因和细胞色素C相关基因)均显著上调,DNA复制和细胞周期相关基因(主要为微型染色体维持蛋白(MCM)相关基因、复制因子C(RFC)相关基因)均显著下调。相关基因表达的变化可能与此阶段成肌细胞增殖速度减慢,逐渐退出细胞周期开始准备下一阶段融合成多核肌管并形成肌纤维有关。对肌肉生长发育相关的关键基因分析发现,促进肌肉生长的IGF1和诱导成肌细胞末端分化的MyoG显著下调,促进肌纤维分化融合的MUSTN1基因、诱导肌祖细胞向成肌细胞转化的MyoD1基因显著上调。【结论】鸭胚胎中后期胸肌发育过程中大量基因差异表达。其中能量代谢相关基因的上调和DNA复制、细胞周期相关基因的下调,以及肌肉发育相关基因MUSTN1显著上调,IGF1、MyoG等显著下调,可能与鸭胚胎中后期胸肌发育阻滞现象密切相关。

关键词: 鸭, 胸肌发育, 转录组测序, 差异表达基因

Abstract:

【Objective】 In order to find the molecular varying mechanism involving the development arrest of pectoralis, Chinese native breeds, including Gaoyou Duck (GYD) and Jinding Duck (JDD), were selected for RNA-seq study using the pectoralis samples during the semi-late embryonic period.【Method】3 ducks of GYD and JDD , respectively, in the 21th embryonic day (ed21) and ed27 were selected to collect pectoralis major muscle and to extract total RNA to build cDNA library for RNA-seq with HiseqTM2000 of Illumina. At last, bioinformatics methods were used to extract differentially expressed genes (DEGs) between different breeds and time points, and to analyze the gene function annotation for studying molecular mechanism of pectoralis development retardation during ed21 and ed27. 【Result】 The results showed that the base ratios with quality value higher than 20 in reads (Q20) were more than 94%, and the base ratios of Q30 were more than 89%, which indicated a reliable sequencing result for the following analysis. The RNA level correlation inspection and mRNA expression level cluster graph both manifest that the correlation of mRNA expression patterns of GYD and JDD at ed21 or ed27 were higher than that of GYD (JDD) during ed21 and ed27. The numbers of DEGs between ed21 and ed27 (6128 DEGs for GYD and 6452 DEGs for JDD) were both apparently more than the numbers of DEGs between GYD and JDD in ed21 (522 DEGs) and ed27 (299 DEGs). qRT-PCR results of selected genes showed a strong correlation with RNA-seq results. GO and KEGG enrichment analysis showed the results that the genes involved in energy metabolism (mainly was coenzyme Q related genes, ATP enzymic synthesis related genes, and cytochrome C related genes) up regulated and DNA replication and cell cycle related-genes (mainly was minichromosome maintenance complex related genes and replication factor C related genes) down regulated significantly. This varies of related genes expression might relate to the slow myoblast proliferation and gradually exit the cell cycle to prepare for the next stage of fusing to multi-nuclei myotube and form myofiber. In the key genes involving in muscle growth and development, IGF1 (a gene promoting muscle growth) and MyoG (inducing terminal differentiation of myoblast) both down regulated dramatically. However, MUSTN1 gene, accelerating muscle fibre into differentiation and fusing stage, and MyoD gene, promoting muscle progenitor cell differentiated to myoblast, were expressed in a higher level in ed27 than in ed21. 【Conclusion】 A lot of genes differentially expressed between ed21 and ed27 in pectoralis muscle of duck, among of which the up-regulation of energy metabolism related genes, the down-regulation of DNA replicate and cell cycle related genes, and up-regulated MUSTN1, down-regulated IGF1 and MyoG, might closed relate to arrest phenomenon of pectoralis development during the semi-late stage of duck embryos.

Key words: duck, pectoralis muscle development, RNA-seq, differentially expressed genes