[1] XIA J, YUAN J, XIN L, ZHANG Y, KONG S, CHEN Y, YANG S, LI K. Transcriptome analysis on the inflammatory cell infiltration of nonalcoholic steatohepatitis in bama minipigs induced by a long-term high-fat, high-sucrose diet. PLoS One, 2014, 9: e113724.
[2] MARKLJUNG E, JIANG L, JAFFE JD, MIKKELSEN TS, WALLERMAN O, LARHAMMAR M, ZHANG X, WANG L, SAENZ-VASH V, GNIRKE A, LINDROTH AM, BARRES R, YAN J, STROMBERG S, DE S, PONTEN F, LANDER E S, CARR S A, ZIERATH JR, KULLANDER K, WADELIUS C, LINDBLAD-TOH K, ANDERSSON G, HJALM G, ANDERSSON L. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biology, 2009, 7: e1000256.
[3] VAN LAERE A S, COPPIETERS W, GEORGES M. Characterization of the bovine pseudoautosomal boundary: Documenting the evolutionary history of mammalian sex chromosomes. Genome Researxh, 2008, 18:1884.
[4] WANG X, JIANG L, WALLERMAN O, ENGSTROM U, AMEUR A, GUPTA RK, QI Y, ANDERSSON L, WELSH N. Transcription factor ZBED6 affects gene expression, proliferation, and cell death in pancreatic beta cells. Proceedings of The National Academy of Sciences of The United States of America, 2013, 110: 15997.
[5] JEON J T, CARLBORG O, TORNSTEN A, GIUFFRA E, AMARGER V, CHARDON P, ANDERSSON-EKLUND L, ANDERSSON K, HANSSON I, LUNDSTROM K, ANDERSSON L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 1999, 21:157.
[6] BUTTER F, KAPPEI D, BUCHHOLZ F, VERMEULEN M, MANN M. A domesticated transposon mediates the effects of a single- nucleotide polymorphism responsible for enhanced muscle growth. EMBO Reports, 2010, 11:305.
[7] HUANG Y Z, SUN Y J, LI M X, WANG J, SUN J J, ZHANG C L, JIA Y T, CHEN H. Evaluation of the causality of the zinc finger BED-type containing 6 gene (ZBED6) for six important growth traits in Nanyang beef cattle. Animal Genetics, 2015, 46:225.
[8] HUANG Y Z, SUN Y J, ZHAN Z Y, LI M X, WANG J, XUE J, LAN X Y, LEI C Z, ZHANG C L, CHEN H. Expression, SNP identification, linkage disequilibrium, and haplotype association analysis of the growth suppressor gene ZBED6 in Qinchuan beef cattle. Animal Biotechnology, 2014, 25:35.
[9] HUANG Y Z, ZHAN Z Y, SUN Y J, WANG J, LI M X, LAN X Y, LEI C Z, ZHANG C L, CHEN H. Comparative analysis of the IGF2 and ZBED6 gene variants and haplotypes reveals significant effect of growth traits in cattle. Genome, 2013, 56:327.
[10] HUANG Y Z, ZHANG L Z, LAI X S, LI M X, SUN Y J, LI C J, LAN X Y, LEI C Z, ZHANG C L, ZHAO X, CHEN H. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoteractivity and DNA methylation in myoblasts. Scientific Reports, 2014, 4:4570.
[11] HUANG Y Z, LI MX, WANG J, ZHAN Z Y, SUN Y J, SUN J J, LI C J, LAN X Y, LEI C Z, ZHANG C L, CHEN H. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle. PLoS One, 2013, 8: e79744.
[12] 马燕. 绵羊ZBED6基因的遗传变异及其与胴体性状的相关性研究[D]. 石河子: 石河子大学, 2016.
MA Y. Effects of ZBED6 variations on carcass traits in sheep[D] Shihezi: Shihezi University, 2016. (in Chinese)
[13] 杨帆, 胡长敏, 丁明星. 7例犬乳腺肿瘤的病理组织学分析. 畜牧与兽医, 2012(s2):122-125.
YANG F, HU C M, DING M X. The pathological histological analysis of 7 canine breast tumors. Animal Husbandry and Veterinarian, 2012(s2):122-125. (in Chinese)
[14] 董坤哲. 藏猪高海拔环境适应性分子机制探讨[D]. 北京: 中国农业科学院, 2015.
DONG K Z. Discussion on the adaptive molecular mechanism of high altitude environment in Tibetan pig[D]. Beijing : Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[15] TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25:1105.
[16] TRAPNELL C, WILLIAMS BA, PERTEA G, MORTAZAVI A, KWAN G, VAN BAREN M J, SALZBERG S L, WOLD B J, PACHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28:511.
[17] TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7: 562.
[18] REIMAND J, ARAK T, ADLER P, KOLBERG L, REISBERG S, PETERSON H, VILO J. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Research, 2016, 44: W83.
[19] CONG L, RAN FA, COX D, LIN S, BARRETTO R, HABIB N, HSU PD, WU X, JIANG W, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339:819.
[20] HAI T, TENG F, GUO R, LI W, ZHOU Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014, 24:372.
[21] ZHOU X, XIN J, FAN N, ZOU Q, HUANG J, OUYANG Z, ZHAO Y, ZHAO B, LIU Z, LAI S, YI X, GUO L, ESTEBAN MA, ZENG Y, YANG H, LAI L. Generation of CRISPR/Cas9-mediated gene- targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences, 2015, 72:1175.
[22] JIANG L, WALLERMAN O, YOUNIS S, RUBIN CJ, GILBERT ER, SUNDSTROM E, GHAZAL A, ZHANG X, WANG L, MIKKELSEN TS, ANDERSSON G, ANDERSSON L. ZBED6 modulates the transcription of myogenic genes in mouse myoblast cells. PLoS One 2014, 9: e94187.
[23] ARBER S, CARONI P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Development, 1996;10:289.
[24] ARBER S, HUNTER JJ, ROSS JJ, HONGO M, SANSIG G, BORG J, PERRIARD JC, CHIEN KR, CARONI P. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell, 1997, 88:393.
[25] KNOLL R, KOSTIN S, KLEDE S, SAVVATIS K, KLINGE L, STEHLE I, GUNKEL S, KOTTER S, BABICZ K, SOHNS M, MIOCIC S, DIDIE M, KNOLL G, ZIMMERMANN WH, THELEN P, BICKEBOLLER H, MAIER LS, SCHAPER W, SCHAPER J, KRAFT T, TSCHOPE C, LINKE W A, CHIEN K R. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circulation Research,2010, 106:695.
[26] KONG Y, FLICK M J, KUDLA A J, KONIECZNY S F. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Molecular CellBiology, 1997, 17:4750.
[27] KNOLL R, HOSHIJIMA M, HOFFMAN H M, PERSON V, LORENZEN-SCHMIDT I, BANG ML, HAYASHI T, SHIGA N, YASUKAWA H, SCHAPER W, MCKENNA W, YOKOYAMA M, SCHORK N J, OMENS J H, MCCULLOCH AD, KIMURA A, GREGORIO C C, POLLER W, SCHAPER J, SCHULTHEISS H P, CHIEN K R. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell, 2002, 111:943.
[28] GEIER C, GEHMLICH K, EHLER E, HASSFELD S, PERROT A, HAYESS K, CARDIM N, WENZEL K, ERDMANN B, KRACKHARDT F, POSCH M G, OSTERZIEL K J, BUBLAK A, NAGELE H, SCHEFFOLD T, DIETZ R, CHIEN K R, SPULER S, FURST D O, NURNBERG P, OZCELIK C. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Human Molecular Genetics, 2008, 17:2753.
[29] MA K K, BANAS K, DE BOLD A J. Determinants of inducible brain natriuretic peptide promoter activity. Regulatory Peptides, 2005, 128:169.
[30] POTTER L R. “Corination” of the proANP converting enzyme. Cell Metabolism, 2005, 1:88.
[31] 张凤, 周广海, 王尧, 王欣农, 曹景宇, 文今福. 心房钠尿肽与心肌肥大的关系. 中华高血压杂志 2008, 16(8): 763-765.
ZHANG F, ZHOU G H, WANG Y, WANG X N, CAO J Y, WEN J F. Relationship between atrial natriuretic peptide and myocardial hypertrophy. Chinese Journal of Hypertension, 2008, 16(8): 763-765. (in Chinese)
[32] BURRIDGE K, WENNERBERG K. Rho and Rac take center stage. Cell, 2004, 116:167.
[33] TAKEUCHI S, KAWASHIMA S, RIKITAKE Y, UEYAMA T, INOUE N, HIRATA K, YOKOYAMA M. Cerivastatin suppresses lipopolysaccharide-induced ICAM-1 expression through inhibition of Rho GTPase in BAEC. Biochemical and Biophysical Research Communications, 2000, 269:97.
[34] TIMSON D J. Functional analysis of disease-causing mutations in human UDP-galactose 4-epimerase. FEBS Journal, 2005, 272:6170.
[35] HEASMAN S J, RIDLEY A J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Reviews Molecular Cell Biology, 2008, 9:690.
[36] RIDLEY A J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology, 2006, 16:522.
[37] CHANDRASHEKAR R, SALEM O, KRIZOVA H, MCFEETERS R, ADAMS P D. A switch I mutant of Cdc42 exhibits less conformational freedom. Biochemistry-Us, 2011, 50: 6196.
[38] MELENDEZ J, GROGG M, ZHENG Y. Signaling role of Cdc42 in regulating mammalian physiology. Journal of Biological Chemistry, 2011, 286:2375.
[39] 文丽丹. 心肌特异性敲除Cdc42对血管紧张素Ⅱ诱导心肌肥大的保护作用[D]. 南昌: 南昌大学, 2015.
WEN L D. Myocardial specificity of angiotensin knockout Cdc42 Ⅱ induced myocardial hypertrophy of protection[D]. Nanchang: Nanchang University, 2015. (in Chinese)
[40] HOVANESSIAN A G. Interferon-induced and double-stranded RNA- activated enzymes: a specific protein kinase and 2',5'-oligoadenylate synthetases. Journal of Interferon and Cytokine Research, 1991, 11:199.
[41] SILVERMAN R H. Viral encounters with 2', 5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. Journal of Virology, 2007, 81:12720.
[42] 刘维婷. 重组猪源OAS1抗日本脑炎病毒的特性研究[D]. 南京: 南京农业大学, 2013.
LIU W T. Characteristics of recombinant pig source OAS1 anti - Japanese encephalitis virus[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[43] MAYER N J, RUBIN S A. Molecular and cellular prospects for repair, augmentation, and replacement of the failing heart. American Heart Journal, 1997, 134:577.
[44] CARNIEL E, TAYLOR M R, SINAGRA G, DI LENARDA A, KU L, FAIN P R, BOUCEK M M, CAVANAUGH J, MIOCIC S, SLAVOV D, GRAW S L, FEIGER J, ZHU X Z, DAO D, FERGUSON D A, BRISTOW M R, MESTRONI L. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation, 2005, 112:54. |