| [1] |
王肖燕. 阿勒泰大尾羊FTO基因表达的时空特异性及其与脂肪沉积的相关性研究[D]. 乌鲁木齐: 新疆农业大学, 2014.
|
|
WANG X Y. Correlation studies between fat mass and obesity associated gene expression and fat deposition in Altay sheep[D]. Urumqi: Xinjiang Agricultural University, 2014. (in Chinese)
|
| [2] |
TANG Z L, SUN C, YAN Y, NIU Z M, LI Y Y, XU X, ZHANG J, WU Y T, LI Y, WANG L, et al. Aberrant elevation of FTO levels promotes liver steatosis by decreasing the m6A methylation and increasing the stability of SREBF1 and ChREBP mRNAs. Journal of Molecular Cell Biology, 2023, 14(9): mjac061.
|
| [3] |
CLAUSSNITZER M, DANKEL S N, KIM K H, QUON G, MEULEMAN W, HAUGEN C, GLUNK V, SOUSA I S, BEAUDRY J L, PUVIINDRAN V, et al. FTO obesity variant circuitry and adipocyte browning in humans. The New England Journal of Medicine, 2015, 373(10): 895-907.
|
| [4] |
VÁMOS A, ARIANTI R, VINNAI B Á, ALRIFAI R, SHAW A, PÓLISKA S, GUBA A, CSŐSZ É, CSOMÓS I, MOCSÁR G, et al. Human abdominal subcutaneous-derived active beige adipocytes carrying FTO rs 1421085 obesity-risk alleles exert lower thermogenic capacity. Frontiers in Cell and Developmental Biology, 2023, 11: 1155673.
|
| [5] |
HUANG C Q, CHEN W, WANG X X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes & Diseases, 2023, 10(6): 2351-2365.
|
| [6] |
TEWS D, FISCHER-POSOVSZKY P, WABITSCH M. Regulation of FTO and FTM expression during human preadipocyte differentiation. Hormone and Metabolic Research, 2011, 43(1): 17-21.
|
| [7] |
CHANG Y-C, LIU P-H, LEE W J, CHANG T J, JIANG Y D, LI H Y, KUO S-S, LEE K C, CHUANG L-M. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes, 2008, 57(8): 2245-2252.
|
| [8] |
WEN W Q, CHO Y S, ZHENG W, DORAJOO R, KATO N, QI L, CHEN C H, DELAHANTY R J, OKADA Y, TABARA Y, et al. Meta-analysis identifies common variants associated with body mass index in East Asians. Nature Genetics, 2012, 44(3): 307-311.
|
| [9] |
SIMOPOULOS A. The FTO gene, browning of adipose tissue and omega-3 fatty acids. Journal of Nutrigenetics and Nutrigenomics, 2016, 9(2/3/4): 123-126.
|
| [10] |
MCMURRAY F, CHURCH C D, LARDER R, NICHOLSON G, WELLS S, TEBOUL L, LORAINE TUNG Y C, RIMMINGTON D, BOSCH F, JIMENEZ V, et al. Adult onset global loss of the fto gene alters body composition and metabolism in the mouse. PLoS Genetics, 2013, 9(1): e1003166.
|
| [11] |
CHURCH C, MOIR L, MCMURRAY F, GIRARD C, BANKS G T, TEBOUL L, WELLS S, BRÜNING J C, NOLAN P M, ASHCROFT F M, COX R D. Overexpression of Fto leads to increased food intake and results in obesity. Nature Genetics, 2010, 42(12): 1086-1092.
|
| [12] |
DE ARAUJO T M, RAZOLLI D S, CORREA-DA-SILVA F, DE LIMA-JUNIOR J C, GASPAR R S, SIDARTA-OLIVEIRA D, VICTORIO S C, DONATO J, KIM Y B, VELLOSO L A. The partial inhibition of hypothalamic IRX3 exacerbates obesity. EBioMedicine, 2019, 39: 448-460.
|
| [13] |
FONTANESI L, SCOTTI E, BUTTAZZONI L, DAVOLI R, RUSSO V. The porcine fat mass and obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. Animal Genetics, 2009, 40(1): 90-93.
|
| [14] |
REN T H, XU M, DU X Y, WANG Y X, LOOR J J, LEI L, GAO W W, DU X L, SONG Y X, LIU G W, LI X W. Research progress on the role of M6A in regulating economic traits in livestock. International Journal of Molecular Sciences, 2024, 25(15): 8365.
|
| [15] |
WANG X B, HUANG N, YANG M, WEI D D, TAI H R, HAN X J, GONG H, ZHOU J, QIN J Q, WEI X W, CHEN H H, FANG T T, XIAO H Y. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death & Disease, 2017, 8(3): e2702.
|
| [16] |
JEVSINEK SKOK D, KUNEJ T, KOVAC M, MALOVRH S, POTOCNIK K, PETRIC N, ZGUR S, DOVC P, HORVAT S. FTO gene variants are associated with growth and carcass traits in cattle. Animal Genetics, 2016, 47(2): 219-222.
|
| [17] |
吴刚. FTO基因核心启动子区鉴定及对关岭牛前脂肪细胞分化的影响[D]. 贵阳: 贵州大学, 2024.
|
|
WU G. Identification of the core promoter region of the FTO gene and its influence on the differentiation of preadipocytes in Guanling cattle[D]. Guiyang: Guizhou University, 2024. (in Chinese)
|
| [18] |
ZHAO Y, ZHANG D Y, ZHANG X X, LI F D, XU D, ZHAO L M, LI X L, ZHANG Y K, WANG J H, YANG X B, WANG W M. Expression features of the ovine FTO gene and association between FTO polymorphism and tail fat deposition related-traits in Hu sheep. Gene, 2022, 826: 146451.
|
| [19] |
李祥坤, 曾道曙, 罗超维, 谢莉, 吴林溪, 李华, 向海. 天农麻鸡脂肪沉积候选基因表达水平与腹脂率的相关性分析. 中国畜牧杂志, 2022, 58(10): 130-135.
|
|
LI X K, ZENG D S, LUO C W, XIE L, WU L X, LI H, XIANG H. Correlation analysis of adipose deposition candidate gene expression level and abdominal fat percentage in Tiannong partridge chicken. Chinese Journal of Animal Science, 2022, 58(10): 130-135. (in Chinese)
|
| [20] |
LI K, HUANG W C, WANG Z J, NIE Q H. m6A demethylase FTO regulate CTNNB1 to promote adipogenesis of chicken preadipocyte. Journal of Animal Science and Biotechnology, 2022, 13(1): 147.
|
| [21] |
HUANG H Y, LIU L Z, LI C M, LIANG Z, HUANG Z Y, WANG Q B, LI S F, ZHAO Z H. Fat mass- and obesity-associated (FTO) genepromoted myoblast differentiation through the focal adhesion pathway in chicken. 3 Biotech, 2020, 10(9): 403.
|
| [22] |
黄华云, 李瑞瑞, 张子晓, 王钱保, 黄正洋, 李春苗, 赵振华. gga-miR-30d-5p表达分析及其对鸡脂肪沉积的调控作用. 南方农业学报, 2023, 54(11): 3359-3368.
|
|
HUANG H Y, LI R R, ZHANG Z X, WANG Q B, HUANG Z Y, LI C M, ZHAO Z H. Expression analysis of gga-miR-30d-5p and its regulation of fat deposition in chickens. Journal of Southern Agriculture, 2023, 54(11): 3359-3368. (in Chinese)
|
| [23] |
BROWN A, HOSSAIN I, PEREZ L J, NZIRORERA C, TOZER K, D’SOUZA K, TRIVEDI P C, AGUIAR C, YIP A M, SHEA J, et al. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS ONE, 2017, 12(12): e0189402.
|
| [24] |
TOMAS A, YERMEN B, MIN L, PESSIN J E, HALBAN P A. Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: Role of gelsolin and cooperation with the MAPK signalling pathway. Journal of Cell Science, 2006, 119(Pt 10): 2156-2167.
|
| [25] |
REN W W, KAWAHARA R, SUZUKI K G N, DIPTA P, YANG G L, THAYSEN-ANDERSEN M, FUJITA M. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. The Journal of Cell Biology, 2025, 224(3): e202407068.
|
| [26] |
GAO H Q, ZHOU L, ZHONG Y M, DING Z, LIN S X, HOU X T, ZHOU X Q, SHAO J, YANG F, ZOU X N, CAO H L, XIAO G Z. Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice. Nature Communications, 2022, 13: 1025.
|
| [27] |
WANG X E, TANG P, GUO F K, ZHANG M, YAN Y, HUANG M B, CHEN Y H, ZHANG L, ZHANG L. mDia1 and Cdc42 regulate activin B-induced migration of bone marrow-derived mesenchymal stromal cells. Stem Cells, 2019, 37(1): 150-161.
|
| [28] |
OZAKI K I, AWAZU M, TAMIYA M, IWASAKI Y, HARADA A, KUGISAKI S, TANIMURA S, KOHNO M. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. American Journal of Physiology Endocrinology and Metabolism, 2016, 310(8): E643-E651.
|
| [29] |
TANG R, DU G L. Advances in macrophage polarization-related signaling pathways in adipose tissue in obesity combined with diabetes. Advances in Clinical Medicine, 2023, 13(3): 3431-3437.
|
| [31] |
TIROSH A, TUNCMAN G, CALAY E S, RATHAUS M, RON I, TIROSH A, YALCIN A, LEE Y G, LIVNE R, RON S, et al. Intercellular transmission of hepatic ER stress in obesity disrupts systemic metabolism. Cell Metabolism, 2021, 33(2): 319-333.e6.
|
| [30] |
王文正, 赵素梅, 高士争. Leptin介导的JAK/STAT信号通路对脂类代谢调节的研究进展. 中国细胞生物学学报, 2011, 33(5): 584-589.
|
|
WANG W Z, ZHAO S M, GAO S Z. Research progress on leptin-mediated JAK/STAT signaling pathway in lipid metabolism. Chinese Journal of Cell Biology, 2011, 33(5): 584-589. (in Chinese)
|
| [32] |
WANG Q, LI D H, CAO G C, SHI Q P, ZHU J, ZHANG M Y, CHENG H, WEN Q, XU H, ZHU L Q, et al. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature, 2021, 600(7888): 314-318.
|
| [33] |
李亚, 唐民科. 白介素-15与脂质代谢. 生理科学进展, 2018, 49(1): 44-48.
|
|
LI Y, TANG M K. Interleukin-15 and lipid metabolism. Progress in Physiological Sciences, 2018, 49(1): 44-48. (in Chinese)
|
| [34] |
CHAKRABARTI P, ENGLISH T, KARKI S, QIANG L, TAO R, KIM J, LUO Z J, FARMER S R, KANDROR K V. SIRT 1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. Journal of Lipid Research, 2011, 52(9): 1693-1701.
|
| [35] |
MATSUMOTO M, HAN S, KITAMURA T, ACCILI D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. The Journal of Clinical Investigation, 2006, 116(9): 2464-2472.
|
| [36] |
SINGH J, KAKKAR P. Oroxylin A, a constituent of Oroxylum indicum inhibits adipogenesis and induces apoptosis in 3T3-L1 cells. Phytomedicine, 2014, 21(12): 1733-1741.
|
| [37] |
AL MADHOUN A, KOCHUMON S, AL-RASHED F, SINDHU S, THOMAS R, MIRANDA L, AL-MULLA F, AHMAD R. Dectin-1 as a potential inflammatory biomarker for metabolic inflammation in adipose tissue of individuals with obesity. Cells, 2022, 11(18): 2879.
|
| [38] |
YADAV H, QUIJANO C, KAMARAJU A K, GAVRILOVA O, MALEK R, CHEN W P, ZERFAS P, DUAN Z G, WRIGHT E C, STUELTEN C, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad 3 signaling. Cell Metabolism, 2011, 14(1): 67-79.
|
| [39] |
韩雪雅, 张海燕. 肥胖相关脂肪组织微环境与脂肪干细胞特征的研究进展. 中国细胞生物学学报, 2020, 42(11): 2029-2037.
|
|
HAN X Y, ZHANG H Y. Research progress on obesity-related adipose tissue microenvironment and the characteristics of adipose stem cells. Chinese Journal of Cell Biology, 2020, 42(11): 2029-2037. (in Chinese)
|
| [40] |
MCCURDY C E, KLEMM D J. Adipose tissue insulin sensitivity and macrophage recruitment: Does PI3K pick the pathway? Adipocyte, 2013, 2(3): 135-142.
|
| [41] |
WANG J G, CAI S Z, XIONG Q W, WENG D Y, WANG Q, MA Z R. PIK3R2 predicts poor outcomes for patients with melanoma and contributes to the malignant progression via PI3K/AKT/NF-κB axis. Clinical & Translational Oncology, 2023, 25(5): 1402-1412.
|
| [42] |
HUANG K, LIANG J J, LIN Y Q, ZHU J J, MA J Q, WANG Y. Molecular characterization of fibroblast growth factor-16 and its role in promoting the differentiation of intramuscular preadipocytes in goat. Animal, 2020, 14(11): 2351-2362.
|
| [43] |
SHAMSI F, XUE R D, HUANG T L, LUNDH M, LIU Y, LEIRIA L O, LYNES M D, KEMPF E, WANG C H, SUGIMOTO S, et al. FGF6 and FGF 9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 2020, 11: 1421.
|
| [44] |
王睿. FGF9、miR-122在肥胖发生及预测中的作用[D]. 上海: 上海交通大学, 2016.
|
|
WANG R. The biological function of fibroblast growth factor 9 and the predictive role of microRNA-122 in obesity[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
|
| [45] |
LUO J H, WANG F X, ZHAO J W, YANG C L, RONG S J, LU W Y, CHEN Q J, ZHOU Q, XIAO J, WANG Y N, et al. PDIA 3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metabolism, 2024, 36(10): 2262-2280.e5.
|
| [46] |
JI Y T, CAO M X, LIU J, CHEN Y F, LI X L, ZHAO J, QU C Q. Rock signaling control PPARγ expression and actin polymerization during adipogenesis. Saudi Journal of Biological Sciences, 2017, 24(8): 1866-1870.
|
| [47] |
LIU X D, LI S J, CUI Q H, GUO B J, DING W Q, LIU J, QUAN L, LI X C, XIE P, JIN L, et al. Activation of GPR81 by lactate drives tumour-induced Cachexia. Nature Metabolism, 2024, 6(4): 708-723.
|