[1] |
FANG Q C, ZHANG X Y, DAI G C, TONG B X, WANG H L, OENEMA O, VAN ZANTEN H H E, GERBER P, HOU Y. Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China. Nature Food, 2023, 4: 677-685.
|
[2] |
FAO. (2020). Food blances[EB/OL]. Retrieved July 31, 2023, from https://www.fao.org/faostat/en/#data/FBS.
|
[3] |
李凯, 孙越, 钟儒清, 马腾, 于泽, 直俊强, 陈亮. 家禽饲料能量体系及有效能值评定方法的比较探讨. 中国家禽, 2023, 45(7): 86-99.
|
|
LI K, SUN Y, ZHONG R Q, MA T, YU Z, ZHI J Q, CHEN L. Comparison of poultry feed energy system and available energy evaluation methods. China Poultry, 2023, 45(7): 86-99. (in Chinese)
|
[4] |
BARZEGAR S, WU S B, NOBLET J, CHOCT M, SWICK R A. Energy efficiency and net energy prediction of feed in laying hens. Poultry Science, 2019, 98(11): 5746-5758.
doi: 10.3382/ps/pez362
pmid: 31347669
|
[5] |
NOBLET J, WU S B, CHOCT M. Methodologies for energy evaluation of pig and poultry feeds: a review. Animal Nutrition, 2022, 8: 185-203.
doi: 10.1016/j.aninu.2021.06.015
pmid: 34977388
|
[6] |
ZAEFARIAN F, COWIESON A J, PONTOPPIDAN K, ABDOLLAHI M R, RAVINDRAN V. Trends in feed evaluation for poultry with emphasis on in vitro techniques. Animal Nutrition, 2021, 7(2): 268-281.
|
[7] |
ŚWIĘCH E. Alternative prediction methods of protein and energy evaluation of pig feeds. Journal of Animal Science and Biotechnology, 2017, 8(1): 39.
|
[8] |
YU Y, ZHAO F, CHEN J, ZOU Y, ZENG S L, LIU S B, TAN H Z. Sensitivity of in vitro digestible energy determined with computer- controlled simulated digestion system and its accuracy to predict dietary metabolizable energy for roosters. Poultry Science, 2021, 100(1): 206-214.
|
[9] |
WANG H, WANG X Y, ZHAN Y C, PENG B, WANG W C, YANG L, ZHU Y W. Predicting the metabolizable energy and metabolizability of gross energy of conventional feedstuffs for Muscovy duck using in vitro digestion method. Journal of Animal Science, 2023, 101: skad018.
|
[10] |
ZHAO F, REN L Q, MI B M, TAN H Z, ZHAO J T, LI H, ZHANG H F, ZHANG Z Y. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster1. Journal of Animal Science, 2014, 92(4): 1537-1547.
doi: 10.2527/jas.2013-6636
pmid: 24663164
|
[11] |
MATEOS G G, CÁMARA L, FONDEVILA G, LÁZARO R P. Critical review of the procedures used for estimation of the energy content of diets and ingredients in poultry. Journal of Applied Poultry Research, 2019, 28(3): 506-525.
|
[12] |
袁建敏. 家禽饲料原料生物学效价评定进展与存在的问题. 饲料工业, 2020, 41(6): 1-6.
|
|
YUAN J M. Progress and problems in the evaluation of biological value of poultry feedstuff. Feed Industry, 2020, 41(6): 1-6. (in Chinese)
|
[13] |
李凯, 赵于庆, 钟儒清, 刘蕾, 严鸿林, 周建川, 陈亮, 张宏福. 自由采食法和排空强饲法评定鸡玉米及高粱有效能值的比较研究. 畜牧兽医学报, 2022, 53(11): 3907-3916.
|
|
LI K, ZHAO Y Q, ZHONG R Q, LIU L, YAN H L, ZHOU J C, CHEN L, ZHANG H F. Comparative study on evaluation of the available energy of corn and Sorghum of chicken by free feeding method and tube feeding method. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3907-3916. (in Chinese)
|
[14] |
LI K, BAI G S, LIU Z Q, ZHAO Y Q, ZHONG R Q, LIU L, YAN H L, ZHOU J C, CHEN L, ZHANG H F. Comparison of metabolizable energy values of wheat, paddy, and brown rice in roosters determined by free-feeding and tube-feeding methods. Animal Research and One Health, 2023: 1-11.
|
[15] |
CHEN L, GAO L X, HUANG Q H, LU Q P, SA R N, ZHANG H F. Prediction of digestible energy of feed ingredients for growing pigs using a computer-controlled simulated digestion system. Journal of Animal Science, 2014, 92(9): 3887-3894.
doi: 10.2527/jas.2013-7092
pmid: 25057025
|
[16] |
杨霞. 采用酶水解物能值估测玉米、玉米DDGS及木薯鸡代谢能的研究[D]. 北京: 中国农业科学院, 2016.
|
|
YANG X. Study on the estimation of metabolizable energy from enzymatic hydrolyzate gross energy of corn, corn DDGS and cassava in roosters[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
|
[17] |
付趁, 马慧慧, 徐彬, 魏凤仙, 李婷婷, 王琳燚, 李绍钰. 体内法和体外法对玉米代谢能的评定效果比较. 河南农业科学, 2017, 46(2): 127-130, 135.
|
|
FU C, MA H H, XU B, WEI F X, LI T T, WANG L Y, LI S Y. Comparative study of evaluation of maize metabolizable energy with in vivo method and in vitro method. Journal of Henan Agricultural Sciences, 2017, 46(2): 127-130, 135. (in Chinese)
|
[18] |
赵峰, 张宏福, 张子仪. 单胃动物仿生消化系统操作手册. 北京: 中国农业科学院, 2011.
|
|
ZHAO F, ZHANG H F, ZHANG Z Y. Operation Manual of Simulated Digestion System for Monogastric Animals. Beijing: Chinese Academy of Agricultral Sciences, 2011. (in Chinese)
|
[19] |
WANG H, ZHANG X F, ZHAI S S, YUAN J J, WANG W C, ZHU Y W, YANG L. Research Note: the comparative study of energy utilization in feedstuffs for Muscovy ducks between in vivo and in vitro. Poultry Science, 2021, 100(2): 1004-1007.
|
[20] |
陈玉洁. 谷实类饲料化学成分和酶水解能值以及肉鸭真代谢能的相关关系研究[D]. 武汉: 华中农业大学, 2011.
|
|
CHEN Y J. Study on the correlations of chemical composition, TME and EHGE for duck feedstuffs[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
|
[21] |
中国饲料成分及营养价值表(2022年第33版)(续). 中国饲料, 2022(24): 63-68.
|
|
Tables of feed composition and nutritive values in China(2022 thirty-third edition). China Feed, 2022(24): 63-68. (in Chinese)
|
[22] |
ZHONG R Q, ADEOLA O. Energy values of solvent-extracted canola meal and expeller-derived canola meal for broiler chickens and growing pigs determined using the regression method. Journal of Animal Science, 2019, 97(8): 3415-3425.
|
[23] |
赵萌菲, 徐彬, 马慧慧, 孙全友, 王琳燚, 王改利, 席燕燕, 付趁, 袁艳枝, 魏凤仙, 李绍钰. 河南省小麦肉鸡代谢能预测方程的建立. 动物营养学报, 2019, 31(6): 2614-2624.
|
|
ZHAO M F, XU B, MA H H, SUN Q Y, WANG L Y, WANG G L, XI Y Y, FU C, YUAN Y Z, WEI F X, LI S Y. Prediction equations of metabolizable energy of wheat in Henan Province for broilers. Chinese Journal of Animal Nutrition, 2019, 31(6): 2614-2624. (in Chinese)
|
[24] |
王永伟. 肉仔鸡小麦表观有效能值测定[D]. 北京: 中国农业科学院, 2009.
|
|
WANG Y W. The determination of apparent effective energy values of wheat in broilers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
|
[25] |
WU S B, SWICK R A, NOBLET J, RODGERS N, CADOGAN D, CHOCT M. Net energy prediction and energy efficiency of feed for broiler chickens. Poultry Science, 2019, 98(3): 1222-1234.
|
[26] |
CARRÉ B, LESSIRE M, JUIN H. Prediction of the net energy value of broiler diets. Animal, 2014, 8(9): 1395-1401.
doi: 10.1017/S175173111400130X
pmid: 25130710
|
[27] |
王美琴. 用仿生消化系统估测鸡饲料代谢能值评定方法的相关性与灵敏度检验[D]. 雅安: 四川农业大学, 2013.
|
|
WANG M Q. Correlation and sensitivity test for the method of predicting metabolizable energy of feed using simulated digestion system[D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese)
|
[28] |
KONG C, ADEOLA O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australasian Journal of Animal Sciences, 2014, 27(7): 917-925.
doi: 10.5713/ajas.2014.r.02
pmid: 25050031
|
[29] |
AARDSMA M P, PARSONS C M. A slope-ratio precision-fed rooster assay for determination of relative metabolizable energy values for fats and oils. Poultry Science, 2017, 96(1): 108-117.
pmid: 27333976
|
[30] |
周克. 套算法和排空强饲法测定肉鸡玉米有效能值的比较研究[D]. 兰州: 甘肃农业大学, 2015.
|
|
ZHOU K. A comparison of substitution method and direct force-feeding method for evaluating available energy of corn for AA broiler[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese)
|
[31] |
翟少伟. 两种方法测定产蛋鸡日粮代谢能值的比较. 当代畜牧, 2007(9): 27-29.
|
|
ZHAI S W. Comparison of two methods for determining metabolic energy value of laying hens' diet. Contemporary Animal Husbandry, 2007(9): 27-29. (in Chinese)
|
[32] |
张巍, 戴晋军, 杨雪海, 魏金涛, 陈明新, 胡骏鹏, 黄少文. 肉鸡酵母水解物代谢能及氨基酸可利用率评定. 中国农业科学, 2019, 52(20): 3685-3694.
doi: 10.3864/j.issn.0578-1752.2019.20.018
|
|
ZHANG W, DAI J J, YANG X H, WEI J T, CHEN M X, HU J P, HUANG S W. Evaluation of apparent metabolic energy, nitrogen corrected metabolic energy, biological value of protein and ileal digestibility of amino acid of yeast hydrolysate for broilers. Scientia Agricultura Sinica, 2019, 52(20): 3685-3694. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.20.018
|
[33] |
WU S B, CHOCT M, PESTI G. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: a critical review. Poultry Science, 2020, 99(1): 385-406.
|