[1] |
BILAL R M, HASSAN F U, FARAG M R, ALI NASIR T, RAGNI M, MAHGOUB H A M, ALAGAWANY M. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. Journal of Thermal Biology, 2021, 99: 102944.
|
[2] |
袁建敏. 肉禽饲养密度应激及营养调控研究进展. 中国家禽, 2017, 39(17): 1-5.
|
|
YUAN J M. Research progress on feeding density stress and nutritional regulation of meat birds. China Poultry, 2017, 39(17): 1-5. (in Chinese)
|
[3] |
王永康, 徐新红. 未来蛋鸡笼养的发展趋势和动物福利问题. 中国家禽, 2002, 24(20): 1-4.
|
|
WANG Y K, XU X H. Development trend and animal wealth of future cage layers. China Poultry, 2002, 24(20): 1-4. (in Chinese)
|
[4] |
于江明, 王秋菊, 刘勃麟, 宁博林, 王龙, 赵乾雨, 刘胜军, 全佳慧. 不同饲养密度对笼养蛋鸡十二指肠肠道菌群的影响. 动物营养学报, 2016, 28(3): 899-907.
|
|
YU J M, WANG Q J, LIU B L, NING B L, WANG L, ZHAO Q Y, LIU S J, QUAN J H. Effects of different stocking density on microbial flora of duodenum for caged layer. Chinese Journal of Animal Nutrition, 2016, 28(3): 899-907. (in Chinese)
|
[5] |
SVIHUS B, SVIHUS C, CHOCT M, CHOCT C, CLASSEN H L, CLASSEN C L. Function and nutritional roles of the avian caeca: A review. World’s Poultry Science Journal, 2013, 69(2): 249-264.
|
[6] |
TURNBAUGH P J, LEY R E, MAHOWALD M A, MAGRINI V, MARDIS E R, GORDON J I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-1031.
|
[7] |
CANI P D, VAN HUL M. Gut microbiota in overweight and obesity: Crosstalk with adipose tissue. Nature Reviews Gastroenterology & Hepatology, 2024, 21(3): 164-183.
|
[8] |
国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中钙的测定: GB/T 6436—2018[S]. 北京: 中国标准出版社, 2018.
|
|
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Determination of calcium in feeds: GB/T 6436—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
|
[9] |
国家市场监督管理总局, 国家标准化管理委员会. 饲料中总磷的测定分光光度法: GB/T 6437—2018[S]. 北京: 中国标准出版社, 2018.
|
|
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Determination of phosphorus in feeds—Spectrophotometry: GB/T 6437—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
|
[10] |
国家市场监督管理总局, 国家标准化管理委员会. 饲料中粗蛋白的测定凯氏定氮法: GB/T 6432—2018[S]. 北京: 中国标准出版社, 2018.
|
|
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Determination of crude protein in feeds—Kjeldahl method: GB/T 6432—2018[S]. Beijing: Standards Press of China, 2018. (in Chinese)
|
[11] |
熊本海, 罗清尧, 赵峰, 郑姗姗. 中国饲料成分及营养价值表(2021年第32版)制订说明. 中国饲料, 2021(23): 97.
|
|
XIONG B H, LUO Q Y, ZHAO F, ZHENG S S. Introduction of tables of feed composition and nutritive values in China (2021 thirty-second edition). China Feed, 2021(23): 97. (in Chinese)
|
[12] |
临沂市市场监督管理局. 琅琊鸡笼养饲养管理技术规程.DB 3713/T223[S]. 临沂, 2021.
|
|
Linyi City Market Supervision Administration. Technical regulations for cage rearing and feeding management of Langya chickens.DB 3713/T223[S]. Linyi, 2021. (in Chinese)
|
[13] |
中华人民共和国农业部. 家禽生产性能名词术语和度量统计方法: NY/T 823—2004[S]. 北京: 中国农业出版社, 2004.
|
|
Ministry of Agriculture of the People’s Republic of China. Performance ferms and measurement for poultry: NY/T 823—2004[S]. Beijing: China Agriculture Press, 2004. (in Chinese)
|
[14] |
高飞宇, 张卫云, 李鼎, 张丽阳, 吴炳鑫, 吴伟, 朱玲, 胡云, 崔小燕, 汪圣晨, 李婷婷, 罗绪刚. 饲粮氯化钠缺乏或过量对22-42日龄肉仔鸡生长性能、肠道形态、盲肠菌群及短链脂肪酸含量的影响. 中国家禽, 2024, 46(4): 40-46.
|
|
GAO F Y, ZHANG W Y, LI D, ZHANG L Y, WU B X, WU W, ZHU L, HU Y, CUI X Y, WANG S C, LI T T, LUO X G. Effect of dietary sodium chloride deficiency or excess on growth performance, intestinal morphology, caecal microflora and short-chain fatty acid content of broilers from 22 to 42 days of age. China Poultry, 2024, 46(4): 40-46. (in Chinese)
|
[15] |
SIMITZIS P E, KALOGERAKI E, GOLIOMYTIS M, CHARISMIADOU M A, TRIANTAPHYLLOPOULOS K, AYOUTANTI A, NIFOROU K, HAGER-THEODORIDES A L, DELIGEORGIS S G. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. British Poultry Science, 2012, 53(6): 721-730.
|
[16] |
QAID M, ALBATSHAN H, SHAFEY T, HUSSEIN E, ABUDABOS A M. Effect of stocking density on the performance and immunity of 1- to 14-d- old broiler chicks. Revista Brasileira de Ciência Avícola, 2016, 18(4): 683-692.
|
[17] |
张蒙, 黄晨轩, 岳巧娴, 锡建中, 代占辉, 赵晓钰, 陈辉. 饲养密度对大午金凤商品代蛋雏鸡生长性能、器官指数及血清抗氧化指标的影响. 中国家禽, 2018, 40(4): 36-41.
|
|
ZHANG M, HUANG C X, YUE Q X, XI J Z, DAI Z H, ZHAO X Y, CHEN H. Effects of stocking density on growth performance, immune organs indexes and seram antioxidant capacity of Dawujinfeng commercial layer chicks. China Poultry, 2018, 40(4): 36-41. (in Chinese)
|
[18] |
刘玮, 韩海霞, 李大鹏, 陶家树, 雷秋霞, 周艳, 刘杰, 王杰, 曹顶国, 李福伟, 邵庆平, 李惠敏. 饲养密度对蛋鸡生产性能、蛋品质、血清指标和肠道组织形态的影响. 动物营养学报, 2022, 34(11): 7002-7012.
|
|
LIU W, HAN H X, LI D P, TAO J S, LEI Q X, ZHOU Y, LIU J, WANG J, CAO D G, LI F W, SHAO Q P, LI H M. Effects of stocking density on laying performance, egg quality, serum parameters and intestinal morphology of laying hens. Chinese Journal of Animal Nutrition, 2022, 34(11): 7002-7012. (in Chinese)
|
[19] |
万文龙, 俸艳萍, 龚炎长, 张弘毅, 王莹. 不同饲养密度对地面平养蛋鸡福利状况和生产性能的影响. 中国家禽, 2019, 41(19): 39-45.
|
|
WAN W L, FENG Y P, GONG Y C, ZHANG H Y, WANG Y. Effect of different stocking density on welfare status and production performance of layer raising on floor. China Poultry, 2019, 41(19): 39-45. (in Chinese)
|
[20] |
ZABIR M, MIAH M A, ALAM M, BHUIYAN M E J, HAQUE M I, SUJAN K M, MUSTARI A. Impacts of stocking density rates on welfare, growth and hemato-biochemical profile in broiler chickens. Journal of Advanced Veterinary and Animal Research, 2021; 8(4): 642-649.
|
[21] |
SUGIHARTO S. Dietary strategies to alleviate high-stocking-density- induced stress in broiler chickens - a comprehensive review. Archives Animal Breeding, 2022, 65(1): 21-36.
|
[22] |
SHIRA E B, SKLAN D, FRIEDMAN A. Impaired immune responses in broiler hatchling hindgut following delayed access to feed. Veterinary Immunology and Immunopathology, 2005, 105(1-2): 33-45.
|
[23] |
NIBA A T, BEAL J D, KUDI A C, BROOKS P H. Bacterial fermentation in the gastrointestinal tract of non-ruminants: Influence of fermented feeds and fermentable carbohydrates. Tropical Animal Health and Production, 2009, 41(7): 1393-1407.
|
[24] |
MANCABELLI L, FERRARIO C, MILANI C, MANGIFESTA M, TURRONI F, DURANTI S, LUGLI G A, VIAPPIANI A, OSSIPRANDI M C, VAN SINDEREN D, VENTURA M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 2016, 18(12): 4727-4738.
|
[25] |
STANLEY D, GEIER M S, DENMAN S E, HARING V R, CROWLEY T M, HUGHES R J, MOORE R J. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 2013, 164(1/2): 85-92.
|
[26] |
KOU X Y, MA Q S, LIU Y H, KHAN M Z, WU B X, CHEN W T, LIU X T, WANG C F, LI Y. Exploring the effect of gastrointestinal Prevotella on growth performance traits in livestock animals. Animals, 2024, 14(13): 1965.
|
[27] |
SHAH T, GUO X S, SONG Y W, FANG Y G, DING L M. Comparative analysis of gut bacterial diversity in wild and domestic yaks on the Qinghai-Tibetan Plateau. Animals, 2024, 14(16): 2380.
|
[28] |
XIE C L, CHENG J H, CHEN P, YAN X, LUO C L, QU H, SHU D M, JI J. Integrating gut and IgA-coated microbiota to identify Blautia as a probiotic for enhancing feed efficiency in chickens. iMeta, 2025, 4(1): e264.
|
[29] |
HE Z X, LIU R R, WANG M J, WANG Q, ZHENG J M, DING J Q, WEN J, FAHEY A G, ZHAO G P. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens. Microbiome, 2023, 11(1): 198.
|
[30] |
YIN Z C, JI S Y, YANG J T, GUO W, LI Y L, REN Z Z, YANG X J. Cecal microbial succession and its apparent association with nutrient metabolism in broiler chickens. mSphere, 2023, 8(3): e0061422.
|
[31] |
RAMAN M, AMBALAM P, DOBLE M. Short-chain fatty acids. Probiotics and Bioactive Carbohydrates in Colon Cancer Management. New Delhi: Springer India, 2016: 97-115.
|
[32] |
SMITS L P, BOUTER K E C, DE VOS W M, BORODY T J, NIEUWDORP M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013, 145(5): 946-953.
|
[33] |
SHEN A, EDWARDS A N, SARKER M R, PAREDES-SABJA D. Sporulation and germination in clostridial pathogens. Microbiology Spectrum, 2019, 7(6). doi: 10.1128/microbiolspec.GPP3-0017-2018.
|
[34] |
LEE J, D’AIGLE J, ATADJA L, QUAICOE V, HONARPISHEH P, GANESH B P, HASSAN A, GRAF J, PETROSINO J, PUTLURI N, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circulation Research, 2020, 127(4): 453-465.
|
[35] |
YEOMAN C J, CHIA N, JERALDO P, SIPOS M, GOLDENFELD N D, WHITE B A. The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, 2012, 13(1): 89-99.
|
[36] |
LIU L X, LI Q Q, YANG Y J, GUO A W. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8: 736739.
|
[37] |
PANDA A K, RAMA RAO S V, RAJU M V L N, SUNDER C S. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australasian Journal of Animal Sciences, 2009, 22(7): 1026-1031.
|
[38] |
ONRUST L, VAN DRIESSCHE K, DUCATELLE R, SCHWARZER K, HAESEBROUCK F, VAN IMMERSEEL F. Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis. Poultry Science, 2018, 97(7): 2303-2311.
|
[39] |
ZDUNCZYK Z, JANKOWSKI J, MIKULSKI D, PRZYBYLSKA- GORNOWICZ B, SOSNOWSKA E, JUSKIEWICZ J. Gastrointestinal morphology and function in turkeys fed diets diluted with whole grain wheat. Poultry Science, 2013, 92(7): 1799-1811.
|
[40] |
SUN B S, HOU L Y, YANG Y. The development of the gut microbiota and short-chain fatty acids of layer chickens in different growth periods. Frontiers in Veterinary Science, 2021, 8: 666535.
|
[41] |
JING Y, YUAN Y Q, MONSON M, WANG P, MU F, ZHANG Q, NA W, ZHANG K, WANG Y X, LENG L, et al. Multi-omics association reveals the effects of intestinal microbiome-host interactions on fat deposition in broilers. Frontiers in Microbiology, 2021, 12: 815538.
|
[42] |
DING J M, ZHAO L L, WANG L F, ZHAO W J, ZHAI Z X, LENG L, WANG Y X, HE C, ZHANG Y, ZHANG H P, LI H, MENG H. Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genetics, Selection, Evolution, 2016, 48(1): 93.
|