| [1] |
LAURIDSEN C. From oxidative stress to inflammation: Redox balance and immune system. Poultry Science, 2019, 98(10): 4240-4246.
|
| [2] |
JIN S S, WIJERATHNE C U B, AU-YEUNG K K W, LEI H G, YANG C B, O K. Effects of high- and low-fiber diets on intestinal oxidative stress in growing-finishing pigs. Journal of Animal Science, 2022, 100(11): skac306.
|
| [3] |
SILVA-GUILLEN Y V, ARELLANO C, BOYD R D, MARTINEZ G, VAN HEUGTEN E. Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. Journal of Animal Science and Biotechnology, 2020, 11(1): 22.
|
| [4] |
HUANG C Y, FAN Z J, HAN D D, JOHNSTON L J, MA X, WANG F L. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway. Journal of Animal Science and Biotechnology, 2021, 12(1): 77.
|
| [5] |
ZHAO Y, HU N M, JIANG Q, ZHU L, ZHANG M, JIANG J, XIONG M Y, YANG M X, YANG J D, SHEN L Y, ZHANG S H, NIU L L, CHEN L, CHEN D W. Protective effects of sodium butyrate on rotavirus inducing endoplasmic reticulum stress-mediated apoptosis via PERK-eIF2α signaling pathway in IPEC-J2 cells. Journal of Animal Science and Biotechnology, 2021, 12(1): 69.
|
| [6] |
LI Y P, JIANG X R, CAI L, ZHANG Y L, DING H B, YIN J D, LI X L. Effects of daidzein on antioxidant capacity in weaned pigs and IPEC-J2 cells. Animal Nutrition, 2022, 11: 48-59.
|
| [7] |
RAHMANI S, BREYNER N M, SU H M, VERDU E F, DIDAR T F. Intestinal organoids: a new paradigm for engineering intestinal epithelium in vitro. Biomaterials, 2019, 194: 195-214.
|
| [8] |
BARKER N. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nature Reviews Molecular Cell Biology, 2014, 15(1): 19-33.
|
| [9] |
SATO T, VRIES R G, SNIPPERT H J, VAN DE WETERING M, BARKER N, STANGE D E, VAN ES J H, ABO A, KUJALA P, PETERS P J, CLEVERS H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265.
|
| [10] |
BOZZETTI V, SENGER S. Organoid technologies for the study of intestinal microbiota-host interactions. Trends in Molecular Medicine, 2022, 28(4): 290-303.
|
| [11] |
XIANG T, WANG J, LI H. Current applications of intestinal organoids: A review. Stem Cell Research & Therapy, 2024, 15(1): 155.
|
| [12] |
VERSTEGEN M M A, COPPES R P, BEGHIN A, DE COPPI P, GERLI M F M, DE GRAEFF N, PAN Q W, SAITO Y, SHI S J, ZADPOOR A A, VAN DER LAAN L J W. Clinical applications of human organoids. Nature Medicine, 2025, 31(2): 409-421.
|
| [13] |
SEO W M, YOON J, LEE J H, LEE Y, LEE H, GEUM D, SUN W, SONG M R. Modeling axonal regeneration by changing cytoskeletal dynamics in stem cell-derived motor nerve organoids. Scientific Reports, 2022, 12: 2082.
|
| [14] |
OYEFESO F A, MUOTRI A R, WILSON C G, PECAUT M J. Brain organoids: A promising model to assess oxidative stress-induced central nervous system damage. Developmental Neurobiology, 2021, 81(5): 653-670.
|
| [15] |
SEBASTIAN R, SONG Y, PAK C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophrenia Research, 2024, 273: 4-23.
|
| [16] |
HUANG J J, XU Z Y, JIAO J, LI Z A, LI S C, LIU Y, LI Z, QU G W, WU J, ZHAO Y, et al. Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury. Bioactive Materials, 2023, 30: 1-14.
|
| [17] |
CHEN J, MA H H, DENG Z Y, LUO Q M, GONG H, LONG B, LI X N. Cerebral organoid arrays for batch phenotypic analysis in sections and three dimensions. International Journal of Molecular Sciences, 2023, 24(18): 13903.
|
| [18] |
GAO Y N, MENG Q W, QIN J W, ZHAO Q Q, SHI B M. Resveratrol alleviates oxidative stress induced by oxidized soybean oil and improves gut function via changing gut microbiota in weaned piglets. Journal of Animal Science and Biotechnology, 2023, 14(1): 54.
|
| [19] |
WANG D F, ZHOU L L, ZHOU H L, HU H C, HOU G Y. Chemical composition and protective effect of guava (Psidium guajava L.) leaf extract on piglet intestines. Journal of the Science of Food and Agriculture, 2021, 101(7): 2767-2778.
|
| [20] |
WANG Z T, MA J, HE Y S, MIU K K, YAO S, TANG C P, YE Y, LIN G. Nrf2-mediated liver protection by 18β-glycyrrhetinic acid against pyrrolizidine alkaloid-induced toxicity through PI3K/Akt/GSK3β pathway. Phytomedicine, 2022, 102: 154162.
|
| [21] |
ZHOU J X, WINK M. Evidence for anti-inflammatory activity of isoliquiritigenin, 18β glycyrrhetinic acid, ursolic acid, and the traditional Chinese medicine plants Glycyrrhiza glabra and Eriobotrya japonica, at the molecular level. Medicines, 2019, 6(2): 55.
|
| [22] |
MA C, WANG F X, ZHU J W, WANG S Y, LIU Y Q, XU J F, ZHAO Q Y, QIN Y C, SI W, ZHANG J M. 18Beta-glycyrrhetinic acid attenuates H2O2-induced oxidative damage and apoptosis in intestinal epithelial cells via activating the PI3K/Akt signaling pathway. Antioxidants, 2024, 13(4): 468.
|
| [23] |
WANG J, TAO X Y, ZHU J L, DAI Z, DU Y Y, XIE Y Y, CHU X Y, FU G B, LEI Z J. Tumor organoid-immune co-culture models: Exploring a new perspective of tumor immunity. Cell Death Discovery, 2025, 11: 195.
|
| [24] |
ZHANG S N, PENG L H, GOSWAMI S, LI Y C, DANG H Y, XING S L, FENG P P, NIGRO G, LIU Y Y, MA Y F, et al. Intestinal crypt microbiota modulates intestinal stem cell turnover and tumorigenesis via indole acetic acid. Nature Microbiology, 2025, 10(3): 765-783.
|
| [25] |
ZHOU J Y, XIE W W, HU T C, WANG X F, YAN H C, WANG X Q. Mulberry leaf-derived morin activates β-catenin by binding to Frizzled7 to promote intestinal stem cell expansion upon heat-stable enterotoxin b injury. Journal of Agricultural and Food Chemistry, 2024, 72(18): 10366-10375.
|
| [26] |
ZHU M, QIN Y C, GAO C Q, YAN H C, WANG X Q. L-Glutamate drives porcine intestinal epithelial renewal by increasing stem cell activity via upregulation of the EGFR-ERK-mTORC1 pathway. Food & Function, 2020, 11(3): 2714-2724.
|
| [27] |
CHEN G, BEI B, FENG Y, LI X Z, JIANG Z, SI J Y, QING D G, ZHANG J, LI N. Glycyrrhetinic acid maintains intestinal homeostasis via HuR. Frontiers in Pharmacology, 2019, 10: 535.
|
| [28] |
ZHENG M Q, ZHAI Y J, YU Y B, SHEN J, CHU S Z, FOCACCIA E, TIAN W Y, WANG S, LIU X S, YUAN X, et al. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Cell Metabolism, 2024, 36(9): 2086-2103.e9.
|
| [29] |
MCCOY R, OLDROYD S, YANG W, WANG K X, HOVEN D, BULMER D, ZILBAUER M, OWENS R M. In vitro models for investigating intestinal host-pathogen interactions. Advanced Science, 2024, 11(8): 2306727.
|
| [30] |
BARKER N, VAN DE WETERING M, CLEVERS H. The intestinal stem cell. Genes & Development, 2008, 22(14): 1856-1864.
|
| [31] |
XING P Y, PETTERSSON S, KUNDU P. Microbial metabolites and intestinal stem cells tune intestinal homeostasis. PROTEOMICS, 2020, 20(5/6): 1800419.
|
| [32] |
KOLEV H M, KAESTNER K H. Mammalian intestinal development and differentiation: The state of the art. Cellular and Molecular Gastroenterology and Hepatology, 2023, 16(5): 809-821.
|
| [33] |
LI J Z, LI Q K, GAO N, WANG Z H, LI F, LI J P, SHAN A S. Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro. Food & Function, 2021, 12(20): 9632-9641.
|
| [34] |
WU C-H, CHEN A-Z, YEN G C. Protective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. Journal of Agricultural and Food Chemistry, 2015, 63(4): 1200-1209.
|
| [35] |
DEGIRMENCI B, HAUSMANN G, VALENTA T, BASLER K. Wnt ligands as a part of the stem cell niche in the intestine and the liver. WNT Signaling in Health and Disease. Amsterdam: Elsevier, 2018: 1-19.
|
| [36] |
BIKKAVILLI R K, MALBON C C. Mitogen-activated protein kinases and Wnt/β-catenin signaling: molecular conversations among signaling pathways. Communicative & Integrative Biology, 2009, 2(1): 46-49.
|
| [37] |
XIE S, LI Y C, ZHAO S Y, LV Y J, YU Q H. Salmonella infection induced intestinal crypt hyperplasia through Wnt/β-catenin pathway in chicken. Research in Veterinary Science, 2020, 130: 179-183.
|
| [38] |
LIU L, RAO J N, ZOU T T, XIAO L, SMITH A, ZHUANG R, TURNER D J, WANG J-Y. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. American Journal of Physiology-Cell Physiology, 2012, 302(1): C277-C285.
|
| [39] |
FRICK A, KHARE V, JIMENEZ K, DAMMANN K, LANG M, KRNJIC A, GMAINER C, BAUMGARTNER M, MESTERI I, GASCHE C. A novel PAK1-Notch1 axis regulates crypt homeostasis in intestinal inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11(3): 892-907.e1.
|
| [40] |
ZAN G X, WANG X F, YAN S K, QIN Y C, YAO L Q, GAO C Q, YAN H C, ZHOU J Y, WANG X Q. Matrine reduced intestinal stem cell damage in Eimeria necatrix-infected chicks via blocking hyperactivation of Wnt signaling. Phytomedicine, 2024, 128: 155363.
|
| [41] |
YIN X L, FARIN H F, VAN ES J H, CLEVERS H, LANGER R, KARP J M. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nature Methods, 2014, 11(1): 106-112.
|
| [42] |
YANG S W, YU M. Role of goblet cells in intestinal barrier and mucosal immunity. Journal of Inflammation Research, 2021, 14: 3171-3183.
|
| [43] |
RA Y E, BANG Y-J. Balancing act of the intestinal antimicrobial proteins on gut microbiota and health. Journal of Microbiology, 2024, 62(3): 167-179.
|