中国农业科学 ›› 2022, Vol. 55 ›› Issue (6): 1159-1171.doi: 10.3864/j.issn.0578-1752.2022.06.009
王树会1,2(),陶雯3,梁硕1,2,张旭博3(
),孙楠1(
),徐明岗1
收稿日期:
2021-02-26
接受日期:
2021-08-12
出版日期:
2022-03-16
发布日期:
2022-03-25
通讯作者:
张旭博,孙楠
作者简介:
王树会,Tel:18801084605;E-mail: 基金资助:
WANG ShuHui1,2(),TAO Wen3,LIANG Shuo1,2,ZHANG XuBo3(
),SUN Nan1(
),XU MingGang1
Received:
2021-02-26
Accepted:
2021-08-12
Online:
2022-03-16
Published:
2022-03-25
Contact:
XuBo ZHANG,Nan SUN
摘要:
【目的】研究施用有机肥对农田土壤固碳及温室气体排放的综合影响,为减缓全球气候变暖提供理论指导。【方法】基于长期定位试验点观测数据,利用验证后的机理过程模型——SPACSYS,结合区域数据库及ArcGIS,模拟2010—2050年华北平原旱地3种施肥情景(等氮量)即单施化肥情景(NPK)、50%化肥配施50%有机肥情景(NPKM(5:5))和30%化肥配施70%有机肥情景(NPKM(3:7))下,土壤年均固碳速率(SOCSR)、土壤N2O年均排放量和年均净全球增温潜势(NGWP)的空间格局。【结果】华北平原旱地SOCSR表现为东部较高、西部较低,较高的地区主要包括江苏省和山东省。相关分析结果表明,SOCSR与初始土壤有机碳含量呈显著负相关,逐步线性回归分析进一步表明,初始土壤有机碳含量、年均温和土壤pH是影响SOCSR的3个重要因子,共解释其变异的24%。土壤N2O年均排放量表现为中部较高、北部和南部较低,较高的地区主要包括山东省部分地区和江苏省。相关分析结果表明,土壤N2O年均排放量与初始土壤有机碳含量呈显著正相关。总体来看,与NPK情景相比,NPKM(5:5)和NPKM(3:7)两种情景均增加华北平原旱地SOCSR、降低土壤N2O年均排放量,其中SOCSR(233和236 kg C·hm-2·a-1)分别增加了79%和82%,土壤N2O年均排放量(15.8和14.4 kg N·hm-2·a-1)分别降低了21%和28%,NGWP(6.6和5.9 t CO2-eq·hm-2·a-1)分别降低了26%和34%。【结论】长期来看,相比传统的单施化肥模式,化肥配施有机肥有利于华北平原旱地土壤固碳、土壤N2O减排和减缓温室效应。
王树会,陶雯,梁硕,张旭博,孙楠,徐明岗. 长期施用有机肥情景下华北平原旱地土壤固碳及N2O排放的空间格局[J]. 中国农业科学, 2022, 55(6): 1159-1171.
WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain[J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
表1
3种施肥情景下2010—2050年华北平原不同地区旱地土壤年均固碳速率(SOCSR)"
施肥情景 Fertilization scenarios | 土壤年均固碳速率Average annual SOC sequestration rate (kg C·hm-2·a-1) | |||||||
---|---|---|---|---|---|---|---|---|
北京 Beijing | 天津 Tianjin | 河北 Hebei | 河南 Henan | 山东 Shandong | 江苏 Jiangsu | 安徽 Anhui | 华北平原 North China Plain | |
NPK | 132±4 | 134±2 | 117±15 | 106±12 | 147±23 | 179±21 | 122±19 | 130±27 |
NPKM(5:5) | 214±7 | 248±10 | 203±19 | 189±19 | 272±36 | 317±21 | 207±30 | 233±48 |
NPKM(3:7) | 217±7 | 251±9 | 205±19 | 192±19 | 275±36 | 320±21 | 209±30 | 236±48 |
表2
3种施肥情景下2010—2050年华北平原不同地区旱地土壤N2O年均排放量"
施肥情景 Fertilization scenarios | 土壤N2O年均排放量Average annual soil N2O emission (kg N·hm-2·a-1) | |||||||
---|---|---|---|---|---|---|---|---|
北京 Beijing | 天津 Tianjin | 河北 Hebei | 河南 Henan | 山东 Shandong | 江苏 Jiangsu | 安徽 Anhui | 华北平原 North China Plain | |
NPK | 17.2±1.4 | 20.3±1.7 | 14.7±2.3 | 16.5±13 | 26.0±6.9 | 23.4±3.8 | 14.9±2.4 | 20.1±7.0 |
NPKM(5:5) | 11.5±1.2 | 14.5±1.3 | 10.5±1.7 | 13.2±2.6 | 21.4±7.1 | 17.4±3.1 | 11.3±1.6 | 15.8±6.8 |
NPKM(3:7) | 9.9±1.0 | 12.5±1.2 | 9.3±1.6 | 12.2±2.5 | 19.8±7.2 | 15.3±2.8 | 10.1±1.3 | 14.4±6.6 |
表3
3种施肥情景下2010—2050年华北平原不同地区旱地年均净全球增温潜势(NGWP)"
施肥情景 Fertilization scenarios | 年均净全球增温潜势 Average annual net global warming potential (t CO2-eq·hm-2·a-1) | |||||||
---|---|---|---|---|---|---|---|---|
北京 Beijing | 天津 Tianjin | 河北 Hebei | 河南 Henan | 山东 Shandong | 江苏 Jiangsu | 安徽 Anhui | 华北平原 North China Plain | |
NPK | 7.6±0.6 | 9.0±0.8 | 6.5±1.0 | 7.3±1.4 | 11.6±3.2 | 10.3±1.7 | 6.5±1.0 | 8.9±3.2 |
NPKM(5:5) | 4.6±0.5 | 5.9±0.6 | 4.2±0.8 | 5.5±1.2 | 9.0±3.3 | 7.0±1.4 | 4.5±0.6 | 6.6±3.1 |
NPKM(3:7) | 3.8±0.4 | 4.9±0.5 | 3.6±0.7 | 5.0±1.2 | 8.3±3.3 | 6.0±1.2 | 3.9±0.5 | 5.9±3.0 |
表4
土壤年均固碳速率(SOCSR)与环境变量间的逐步线性回归"
响应变量 Response index | 解释变量 Variable included | 回归方程Regression | 参数Parameter | ||||
---|---|---|---|---|---|---|---|
F | 显著性 Sig. | 校正R2 Adj. R2 | 系数Coefficient | t | 显著性 Sig. | ||
土壤年均固碳速率Average annual SOC sequestration rate (SOCSR) | 截距Intercept | 20.42 | <0.0001 | 0.24 | 851.78 | 6.77 | <0.0001 |
初始土壤有机碳含量Initial SOC content | -8.12 | -7.52 | <0.0001 | ||||
年均温MAT | -21.90 | -3.98 | <0.0001 | ||||
pH | -34.57 | -3.06 | 0.003 |
[1] | BOUCHER O, RANDALL D, ARTAXO P, BRETHERTON C, MIDGLEY P M. Contribution of working group | to the fifth assessment report of the Intergovernmental Panel on Climate Change. Clouds and aerosols, 2013. |
[2] |
秦大河, Thomas Stocker. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 2014,10(1):1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001.
doi: 10.3969/j.issn.1673-1719.2014.01.001 |
QIN D H, STOCKER T. Highlights of the IPCC working group I fifth assessment report. Progressus Inquisitiones DE Mutatione Climatis, 2014,10(1):1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001. (inChinese)
doi: 10.3969/j.issn.1673-1719.2014.01.001 |
|
[3] |
王玉英, 李晓欣, 董文旭, 张玉铭, 秦树平, 胡春胜. 华北平原农田温室气体排放与减排综述. 中国生态农业学报, 2018,26(2):167-174. doi: 10.13930/j.cnki.cjea.171117.
doi: 10.13930/j.cnki.cjea.171117 |
WANG Y Y, LI X X, DONG W X, ZHANG Y M, QIN S P, HU C S. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the North China Plain. Chinese Journal of Eco-Agriculture, 2018,26(2):167-174. doi: 10.13930/j.cnki.cjea.171117.(in Chinese)
doi: 10.13930/j.cnki.cjea.171117 |
|
[4] |
王玉英, 胡春胜. 施氮水平对太行山前平原冬小麦-夏玉米轮作体系土壤温室气体通量的影响. 中国生态农业学报, 2011,19(5):1122-1128. doi: 10.3724/sp.j.1011.2011.01122.
doi: 10.3724/sp.j.1011.2011.01122 |
WANG Y Y, HU C S. Soil greenhouse gas emission in winter wheat/summer maize rotation ecosystem as affected by nitrogen fertilization in the Piedmont Plain of Mount Taihang, China. Chinese Journal of Eco-Agriculture, 2011,19(5):1122-1128. doi: 10.3724/sp.j.1011.2011.01122. (in Chinese)
doi: 10.3724/sp.j.1011.2011.01122 |
|
[5] |
王玉英, 胡春胜, 程一松, 张玉铭, 明华, 杨培培. 太行山前平原夏玉米-冬小麦轮作生态系统碳截存及其气体调节价值. 农业环境科学学报, 2009,28(7):1508-1515. doi: 10.3321/j.issn:1672-2043.2009.07.031.
doi: 10.3321/j.issn:1672-2043.2009.07.031 |
WANG Y Y, HU C S, CHENG Y S, ZHANG Y M, MING H, YANG P P. Carbon sequestrations and gas regulations in summer-maize and winter-wheat rotation ecosystem affected by nitrogen fertilization in the piedmont plain of Taihang mountains, China. Journal of Agro-Environment Science, 2009,28(7):1508-1515. doi: 10.3321/j.issn:1672-2043.2009.07.031. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2009.07.031 |
|
[6] |
LIU C Y, WANG K, ZHENG X H. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in Northern China. Biogeosciences, 2012,9(2):839-850. doi: 10.5194/bg-9-839-2012.
doi: 10.5194/bg-9-839-2012 |
[7] |
LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304(5677):1623-1627. doi: 10.1126/science.1097396.
doi: 10.1126/science.1097396 |
[8] |
MAILLARD É, ANGERS D A. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology, 2014,20(2):666-679. doi: 10.1111/gcb.12438.
doi: 10.1111/gcb.12438 |
[9] |
JIANG G Y, ZHANG W J, XU M G, KUZYAKOV Y, ZHANG X B, WANG J Z, DI J Y, MURPHY D V. Manure and mineral fertilizer effects on crop yield and soil carbon sequestration: a meta-analysis and modeling across China. Global Biogeochemical Cycles, 2018,32(11):1659-1672. doi: 10.1029/2018gb005960.
doi: 10.1029/2018gb005960 |
[10] |
XU C, HAN X A, BOL R, SMITH P, WU W L, MENG F Q. Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: a meta-analysis. Ecology and Evolution, 2017,7(17):6702-6715. doi: 10.1002/ece3.3211.
doi: 10.1002/ece3.3211 |
[11] |
SANZ-COBENA A, LASSALETTA L, AGUILERA E, PRADO A D, GARNIER J, BILLEN G, IGLESIAS A, SÁNCHEZ B, GUARDIA G, ABALOS D, PLAZA-BONILLA D, PUIGDUETA-BARTOLOMÉ I, MORAL R, GALÁN E, ARRIAGA H, MERINO P, INFANTE-AMATE J, MEIJIDE A, SMITH P. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: a review. Agriculture, Ecosystems & Environment, 2017,238:5-24. doi: 10.1016/j.agee.2016.09.038.
doi: 10.1016/j.agee.2016.09.038 |
[12] |
翟振, 王立刚, 李虎, 邱建军, 杨军, 董小雨. 有机无机肥料配施对春玉米农田N2O排放及净温室效应的影响. 农业环境科学学报, 2013,32(12):2502-2510. doi: 10.11654/jaes.2013.12.012.
doi: 10.11654/jaes.2013.12.012 |
ZHAI Z, WANG L G, LI H, QIU J J, YANG J, DONG X Y. Nitrous oxide emissions and net greenhouse effect from spring-maize field as influenced by combined application of manure and inorganic fertilizer. Journal of Agro-Environment Science, 2013,32(12):2502-2510. doi: 10.11654/jaes.2013.12.012. (in Chinese)
doi: 10.11654/jaes.2013.12.012 |
|
[13] |
GUO Y L, LUO L G, CHEN G X, KOU Y P, XU H. Mitigating nitrous oxide emissions from a maize-cropping black soil in northeast China by a combination of reducing chemical N fertilizer application and applying manure in autumn. Soil Science and Plant Nutrition, 2013,59(3):392-402. doi: 10.1080/00380768.2013.775006.
doi: 10.1080/00380768.2013.775006 |
[14] |
LIU H T, LI J, LI X, ZHENG Y H, FENG S F, JIANG G M. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Science Bulletin, 2015,60(6):598-606. doi: 10.1007/s11434-014-0679-6.
doi: 10.1007/s11434-014-0679-6 |
[15] |
沈仕洲, 王风, 薛长亮, 张克强. 施用有机肥对农田温室气体排放影响研究进展. 中国土壤与肥料, 2015(6):1-8. doi: 10.11838/sfsc.20150601.
doi: 10.11838/sfsc.20150601 |
SHEN S Z, WANG F, XUE C L, ZHANG K Q. Research advances on effect of organic fertilizer on farmland greenhouse gas emissions. Soil and Fertilizer Sciences in China, 2015(6):1-8. doi: 10.11838/sfsc.20150601. (in Chinese)
doi: 10.11838/sfsc.20150601 |
|
[16] | 赵满兴, 周建斌, 陈竹君, 杨绒. 有机肥中可溶性有机碳、氮含量及其特性. 生态学报, 2007,27(1):397-403. |
ZHAO M X, ZHOU J B, CHEN Z J, YANG R. Concentration and characteristics of soluble organic nitrogen (SON) and carbon (SOC) in different types of organic manures. Acta Ecologica Sinica, 2007,27(1):397-403. (in Chinese) | |
[17] |
王树会, 张旭博, 孙楠, 李忠芳, 徐明岗. 2050年农田土壤温室气体排放及碳氮储量变化SPACSYS模型预测. 植物营养与肥料学报, 2018,24(6):1550-1565. doi: 10.11674/zwyf.18216.
doi: 10.11674/zwyf.18216 |
WANG S H, ZHANG X B, SUN N, LI Z F, XU M G. Prediction of greenhouse gas emissions and carbon and nitrogen stocks in farmland soils in 2050 by SPACSYS model. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1550-1565. doi: 10.11674/zwyf.18216. (in Chinese)
doi: 10.11674/zwyf.18216 |
|
[18] |
WU L H, MCGECHAN M B, MCROBERTS N, BADDELEY J A, WATSON C A. SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description. Ecological Modelling, 2007,200(3/4):343-359. doi: 10.1016/j.ecolmodel.2006.08.010.
doi: 10.1016/j.ecolmodel.2006.08.010 |
[19] |
BINGHAM I J, WU L H. Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis. European Journal of Agronomy, 2011,34(3):181-189. doi: 10.1016/j.eja.2011.01.003.
doi: 10.1016/j.eja.2011.01.003 |
[20] | WU L H, SHEPHERD A. Special features of the SPACSYS modeling package and procedures for parameterization and validation. Methods of Introducing System Models into Agricultural Research. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015: 117-154. |
[21] |
ZHANG X B, XU M G, SUN N, XIONG W, HUANG S M, WU L H. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma, 2016,265:176-186. doi: 10.1016/j.geoderma.2015.11.027.
doi: 10.1016/j.geoderma.2015.11.027 |
[22] |
LIANG S, LI Y F, ZHANG X B, SUN Z G, SUN N, DUAN Y H, XU M G, WU L H. Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in Northern China. Agricultural and Forest Meteorology, 2018,262:310-321. doi: 10.1016/j.agrformet.2018.07.019.
doi: 10.1016/j.agrformet.2018.07.019 |
[23] |
WU L H, WHITMORE A P, BELLOCCHI G. Modelling the impact of environmental changes on grassland systems with SPACSYS. Advances in Animal Biosciences, 2015,6(1):37-39. doi: 10.1017/s2040470014000508.
doi: 10.1017/s2040470014000508 |
[24] |
ZHANG X B, XU M G, LIU J, SUN N, WANG B R, WU L H. Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: a model approach. Journal of Environmental Management, 2016,167:105-114. doi: 10.1016/j.jenvman.2015.11.014.
doi: 10.1016/j.jenvman.2015.11.014 |
[25] |
ZHANG X B, SUN Z G, LIU J, OUYANG Z, WU L H. Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain. Soil and Tillage Research, 2018,178:32-40. doi: 10.1016/j.still.2017.12.013.
doi: 10.1016/j.still.2017.12.013 |
[26] |
LIU C, WANG L, COCQ K L, CHANG C L, LI Z G, CHEN F, LIU Y, WU L H. Climate change and environmental impacts on and adaptation strategies for production in wheat-rice rotations in Southern China. Agricultural and Forest Meteorology, 2020,292/293:108136. doi: 10.1016/j.agrformet.2020.108136.
doi: 10.1016/j.agrformet.2020.108136 |
[27] |
LIANG S, ZHANG X B, SUN N, LI Y F, XU M G, WU L H. Modeling crop yield and nitrogen use efficiency in wheat and maize production systems under future climate change. Nutrient Cycling in Agroecosystems, 2019,115(1):117-136. doi: 10.1007/s10705-019-10013-4.
doi: 10.1007/s10705-019-10013-4 |
[28] |
LI Y F, LIU Y, HARRIS P, SINT H, MURRAY P J, LEE M R F, WU L H. Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process- based model. Science of the Total Environment, 2017,603/604:27-37. doi: 10.1016/j.scitotenv.2017.06.012.
doi: 10.1016/j.scitotenv.2017.06.012 |
[29] |
张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011,19(4):966-975. doi: 10.3724/sp.j.1011.2011.00966.
doi: 10.3724/sp.j.1011.2011.00966 |
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011,19(4):966-975. doi: 10.3724/sp.j.1011.2011.00966. (in Chinese)
doi: 10.3724/sp.j.1011.2011.00966 |
|
[30] |
LI B Z, SONG H, CAO W C, WANG Y J, CHEN J S, GUO J H. Responses of soil organic carbon stock to animal manure application: a new global synthesis integrating the impacts of agricultural managements and environmental conditions. Global Change Biology, 2021,27:5356-5367. doi: 10.1111/gcb.15731.
doi: 10.1111/gcb.15731 |
[31] |
SINGH BRAR B, SINGH J, SINGH G, KAUR G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize-wheat rotation. Agronomy, 2015,5(2):220-238. doi: 10.3390/agronomy5020220.
doi: 10.3390/agronomy5020220 |
[32] |
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982,33(2):141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x.
doi: 10.1111/j.1365-2389.1982.tb01755.x |
[33] |
SIX J, ELLIOTT E T, PAUSTIAN K, DORAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998,62(5):1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x.
doi: 10.2136/sssaj1998.03615995006200050032x |
[34] |
HAYNES R J, NAIDU R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 1998,51(2):123-137. doi: 10.1023/A:1009738307837.
doi: 10.1023/A:1009738307837 |
[35] |
EDMEADES D C. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems, 2003,66(2):165-180. doi: 10.1023/A:1023999816690.
doi: 10.1023/A:1023999816690 |
[36] |
陈云峰, 韩雪梅, 胡诚, 李双来, 乔艳, 刘东海. 长期施肥对黄棕壤固碳速率及有机碳组分影响. 生态环境学报, 2013,22(2):269-275. doi: 10.16258/j.cnki.1674-5906.2013.02.018.
doi: 10.16258/j.cnki.1674-5906.2013.02.018 |
CHEN Y F, HAN X M, HU C, LI S L, QIAO Y, LIU D H. Impact of long-term different fertilization on yellow brownish paddy soil carbon sequestration rate and organic carbon fractions. Ecology and Environmental Sciences, 2013,22(2):269-275. doi: 10.16258/j.cnki.1674-5906.2013.02.018. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2013.02.018 |
|
[37] |
王晶, 朱平, 张男, 解宏图, 张旭东. 施肥对黑土活性有机碳和碳库管理指数的影响. 土壤通报, 2003,34(5):394-397. doi: 10.3321/j.issn:0564-3945.2003.05.004.
doi: 10.3321/j.issn:0564-3945.2003.05.004 |
WANG J, ZHU P, ZHANG N, XIE H T, ZHANG X D. Effect of fertilization on soil active C and C pool management index of black soil. Chinese Journal of Soil Science, 2003,34(5):394-397. doi: 10.3321/j.issn:0564-3945.2003.05.004. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2003.05.004 |
|
[38] | 赵金玮. 有机肥与化肥配施对黑土肥力的影响[D]. 哈尔滨: 东北农业大学, 2009. |
ZHAO J W. Effects of organic manure and inorganic fertilizer combination on increasing fertility of black soil[D]. Harbin: Northeast Agricultural University, 2009. (in Chinese) | |
[39] |
金琳, 李玉娥, 高清竹, 刘运通, 万运帆, 秦晓波, 石锋. 中国农田管理土壤碳汇估算. 中国农业科学, 2008,41(3):734-743. doi: 10.3864/j.issn.0578-1752.2008.03.014.
doi: 10.3864/j.issn.0578-1752.2008.03.014 |
JIN L, LI Y E, GAO Q Z, LIU Y T, WAN Y F, QIN X B, SHI F. Estimate of carbon sequestration under cropland management in China. Scientia Agricultura Sinica, 2008,41(3):734-743. doi: 10.3864/j.issn.0578-1752.2008.03.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.03.014 |
|
[40] |
YU Y X, ZHANG Y X, XIAO M, ZHAO C Y, YAO H Y. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes. Catena, 2021,206:105483. doi: 10.1016/j.catena.2021.105483.
doi: 10.1016/j.catena.2021.105483 |
[41] |
STEWART C E, PAUSTIAN K, CONANT R T, PLANTE A F, SIX J. Soil carbon saturation: Evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 2008,40(7):1741-1750. doi: 10.1016/j.soilbio.2008.02.014.
doi: 10.1016/j.soilbio.2008.02.014 |
[42] |
MANN L K. Changes in soil carbon storage after cultivation. Soil Science, 1986,142(5):279-288. doi: 10.3334/cdiac/tcm.007.
doi: 10.3334/cdiac/tcm.007 |
[43] | 黄昌勇, 徐建明. 土壤学. 3版. 北京: 中国农业出版社, 2010. |
HUANG C Y, XU J M. Soil Science. 3rd ed. Beijing: Chinese Agriculture Press, 2010. (in Chinese) | |
[44] |
舒晓晓, 李迎春, 王艳群, 魏珊珊, 石新丽, 王朝东, 彭正萍, 王燕. 氮肥配施调控剂对麦田土壤N2O排放及氮素利用的影响. 河北农业大学学报, 2016,39(5):30-36, 56. doi: 10.13320/j.cnki.jauh.2016.0104.
doi: 10.13320/j.cnki.jauh.2016.0104 |
SHU X X, LI Y C, WANG Y Q, WEI S S, SHI X L, WANG C D, PENG Z P, WANG Y. Effects of nitrogen fertilizer application on soil N2O emission and nitrogen use in wheat field. Journal of Agricultural University of Hebei, 2016,39(5):30-36, 56. doi: 10.13320/j.cnki.jauh.2016.0104. (in Chinese)
doi: 10.13320/j.cnki.jauh.2016.0104 |
|
[45] |
杨清龙, 刘鹏, 董树亭, 张吉旺, 赵斌, 李荣发, 任昊, 任寒, 韩祥飞. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响. 中国农业科学, 2018,51(13):2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004.
doi: 10.3864/j.issn.0578-1752.2018.13.004 |
YANG Q L, LIU P, DONG S T, ZHANG J W, ZHAO B, LI R F, REN H, REN H, HAN X F. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize. Scientia Agricultura Sinica, 2018,51(13):2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.004 |
|
[46] |
续勇波, 蔡祖聪. 亚热带土壤氮素反硝化过程中N2O的排放和还原. 环境科学学报, 2008,28(4):731-737. doi: 10.3321/j.issn:0253-2468.2008.04.019.
doi: 10.3321/j.issn:0253-2468.2008.04.019 |
XU Y B, CAI Z C. Nitrous oxide emission and reduction during denitrification in subtropical soils. Acta Scientiae Circumstantiae, 2008,28(4):731-737. doi: 10.3321/j.issn:0253-2468.2008.04.019. (in Chinese)
doi: 10.3321/j.issn:0253-2468.2008.04.019 |
|
[47] |
CAI Y J, DING W X, LUO J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement. Atmospheric Environment, 2013,65:112-122. doi: 10.1016/j.atmosenv.2012.10.038.
doi: 10.1016/j.atmosenv.2012.10.038 |
[48] |
孟磊, 蔡祖聪, 丁维新. 长期施肥对华北典型潮土N分配和N2O排放的影响. 生态学报, 2008,28(12):6197-6203. doi: 10.3321/j.issn:1000-0933.2008.12.050.
doi: 10.3321/j.issn:1000-0933.2008.12.050 |
MENG L, CAI Z C, DING W X. Effects of long-term fertilization on N distribution and N2O emission in fluvo-aquci soil in North China. Acta Ecologica Sinica, 2008,28(12):6197-6203. doi: 10.3321/j.issn:1000-0933.2008.12.050. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2008.12.050 |
|
[49] | 马二登, 马静, 徐华, 蔡祖聪. 施肥对稻田N2O排放的影响. 农业环境科学学报, 2009,28(12):2453-2458. |
MA E D, MA J, XU H, CAI Z C. Effects of fertilization on nitrous oxide emission from paddy fields: a review. Journal of Agro-Environment Science, 2009,28(12):2453-2458. (in Chinese) | |
[50] | 李虎. 黄淮海平原农田土壤CO2和N2O释放及区域模拟评价研究[D]. 北京: 中国农业科学院, 2006. |
LI H. Study on soil CO2 and N2O emissions in agro-ecosystem and regional model-based evaluation in Huang-Huai-Hai plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese) | |
[51] |
李睿达, 张凯, 苏丹, 逯非, 万五星, 王效科, 郑华. 施氮强度对不同土壤有机碳水平桉树林温室气体通量的影响. 环境科学, 2014,35(10):3903-3910. doi: 10.13227/j.hjkx.2014.10.037.
doi: 10.13227/j.hjkx.2014.10.037 |
LI R D, ZHANG K, SU D, LU F, WAN W X, WANG X K, ZHENG H. Effects of nitrogen application on soil greenhouse gas fluxes in Eucalyptus plantations with different soil organic carbon content. Environmental Science, 2014,35(10):3903-3910. doi: 10.13227/j.hjkx.2014.10.037. (in Chinese)
doi: 10.13227/j.hjkx.2014.10.037 |
|
[52] |
王效科, 庄亚辉, 李长生. 中国农田土壤N2O排放通量分布格局研究. 生态学报, 2001,21(8):1225-1232. doi: 10.3321/j.issn:1000-0933.2001.08.002.
doi: 10.3321/j.issn:1000-0933.2001.08.002 |
WANG X K, ZHUANG Y H, LI C S. The distribution pattern of N2O emission from agricultural soil in China. Acta Ecologica Sinica, 2001,21(8):1225-1232. doi: 10.3321/j.issn:1000-0933.2001.08.002. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2001.08.002 |
|
[53] |
AHN Y H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 2006,41(8):1709-1721. doi: 10.1016/j.procbio.2006.03.033.
doi: 10.1016/j.procbio.2006.03.033 |
[54] |
MATHIEU O, LÉVÊQUE J, HÉNAULT C, MILLOUX M J, BIZOUARD F, ANDREUX F. Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biology and Biochemistry, 2006,38(5):941-951. doi: 10.1016/j.soilbio.2005.08.010.
doi: 10.1016/j.soilbio.2005.08.010 |
[55] |
XU Y B, CAI Z C. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European Journal of Soil Science, 2007,58(6):1293-1303. doi: 10.1111/j.1365-2389.2007.00923.x.
doi: 10.1111/j.1365-2389.2007.00923.x |
[56] |
田亚男, 张水清, 林杉, Muhammad Shaaban, 何志龙. 外加碳氮对不同有机碳土壤N2O和CO2排放的影响. 农业环境科学学报, 2015,34(12):2410-2417. doi: 10.11654/jaes.2015.12.022.
doi: 10.11654/jaes.2015.12.022 |
TIAN Y N, ZHANG S Q, LIN S, SHAABAN M, HE Z L. Influence of soluble carbon and nitrogen additions on N2O and CO2 emissions from two soils with different organic carbon content. Journal of Agro-Environment Science, 2015,34(12):2410-2417. doi: 10.11654/jaes.2015.12.022. (in Chinese)
doi: 10.11654/jaes.2015.12.022 |
|
[57] |
周龙, 龙光强, 汤利, 郑毅. 综合产量和土壤N2O排放的马铃薯施氮量分析. 农业工程学报, 2017,33(5):155-161. doi: 10.11975/j.issn.1002-6819.2017.02.021.
doi: 10.11975/j.issn.1002-6819.2017.02.021 |
ZHOU L, LONG G Q, TANG L, ZHENG Y. Analysis on N application rates considering yield and N2O emission in potato production. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(2):155-161. doi: 10.11975/j.issn.1002-6819.2017.02.021. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2017.02.021 |
|
[58] |
JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, ZHANG F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, 2009,106(9):3041-3046. doi: 10.1073/pnas.0813417106.
doi: 10.1073/pnas.0813417106 |
[59] |
卢燕宇, 黄耀, 张稳, 郑循华. 基于GIS技术的1991—2000年中国农田化肥氮源一氧化二氮直接排放量估计. 应用生态学报, 2007,18(7):1539-1545. doi: 10.13287/j.1001-9332.2007.0258.
doi: 10.13287/j.1001-9332.2007.0258 |
LU Y Y, HUANG Y, ZHANG W, ZHENG X H. Estimation of chemical fertilizer N-induced direct N2O emission from China agricultural fields in 1991-2000 based on GIS technology. Chinese Journal of Applied Ecology, 2007,18(7):1539-1545. doi: 10.13287/j.1001-9332.2007.0258. (in Chinese)
doi: 10.13287/j.1001-9332.2007.0258 |
|
[60] |
王绍强, 刘纪远, 于贵瑞. 中国陆地土壤有机碳蓄积量估算误差分析. 应用生态学报, 2003,14(5):797-802. doi: 10.13287/j.1001-9332.2003.0179.
doi: 10.13287/j.1001-9332.2003.0179 |
WANG S Q, LIU J Y, YU G R. Error analysis of estimating terrestrial soil organic carbon storage in China. Chinese Journal of Applied Ecology, 2003,14(5):797-802. doi: 10.13287/j.1001-9332.2003.0179. (in Chinese)
doi: 10.13287/j.1001-9332.2003.0179 |
|
[61] | 卢燕宇. 基于模型和GIS技术的中国农田化学氮源N2O直接排放量估计[D]. 南京: 南京农业大学, 2007. |
LU Y Y. Estimation of fertilizer-induced direct N2O emission from Chinese agricultural fields based on integration of model and GIS technology[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese) | |
[62] |
BURGESS T M, WEBSTER R. Optimal interpolation and isarithmic mapping of soil properties. Journal of Soil Science, 1980,31(2):315-331. doi: 10.1111/j.1365-2389.1980.tb02085.x.
doi: 10.1111/j.1365-2389.1980.tb02085.x |
[63] |
LIU D W, WANG Z M, ZHANG B, SONG K S, LI X Y, LI J P, LI F, DUAN H T. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agriculture, Ecosystems & Environment, 2006,113(1/2/3/4):73-81. doi: 10.1016/j.agee.2005.09.006.
doi: 10.1016/j.agee.2005.09.006 |
[64] |
VENTERIS E R, BASTA N T, BIGHAM J M, REA R. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations. Journal of Environmental Quality, 2014,43(3):936-946. doi: 10.2134/jeq2013.11.0459.
doi: 10.2134/jeq2013.11.0459 |
[65] |
BHUNIA G S, SHIT P K, MAITI R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 2018,17(2):114-126. doi: 10.1016/j.jssas.2016.02.001.
doi: 10.1016/j.jssas.2016.02.001 |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[4] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[5] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[6] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[7] | 王淑婷,孔雨光,张赞,陈红艳,刘鹏. 基于星-机光谱融合的棉花叶片SPAD值反演[J]. 中国农业科学, 2022, 55(24): 4823-4839. |
[8] | 邓远建,超博. 灰水足迹视角下我国省域农业生态效率及其影响因素[J]. 中国农业科学, 2022, 55(24): 4879-4894. |
[9] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[10] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[11] | 黄翀,侯相君. 基于Bi-LSTM模型的时间序列遥感作物分类研究[J]. 中国农业科学, 2022, 55(21): 4144-4157. |
[12] | 张杰,王川,董晓霞,祝文琪,岳慧丽,刘升平,周清波. 基于裂变模式的农业农村信息快速调查及分析平台开发与应用[J]. 中国农业科学, 2022, 55(21): 4158-4174. |
[13] | 苏媛媛,张德权,古明辉,张春娟,李少博,郑晓春,陈丽. 不同来源ATP表征冷鲜羊肉新鲜度[J]. 中国农业科学, 2022, 55(19): 3841-3853. |
[14] | 胡志强,宋孝玉,覃琳,刘辉. 高寒荒漠草原季节性放牧管理优化模拟研究[J]. 中国农业科学, 2022, 55(19): 3862-3874. |
[15] | 王巧娟,何虹,李亮,张超,蔡焕杰. 基于AquaCrop模型的大豆灌溉制度优化研究[J]. 中国农业科学, 2022, 55(17): 3365-3379. |
|