中国农业科学 ›› 2021, Vol. 54 ›› Issue (1): 164-178.doi: 10.3864/j.issn.0578-1752.2021.01.012
王慧玲1(),闫爱玲2,孙磊3,张国军1,王晓玥1,任建成1,徐海英1(
)
收稿日期:
2020-04-29
接受日期:
2020-08-19
出版日期:
2021-01-01
发布日期:
2021-01-13
通讯作者:
徐海英
作者简介:
王慧玲,E-mail: 基金资助:
WANG HuiLing1(),YAN AiLing2,SUN Lei3,ZHANG GuoJun1,WANG XiaoYue1,REN JianCheng1,XU HaiYing1(
)
Received:
2020-04-29
Accepted:
2020-08-19
Online:
2021-01-01
Published:
2021-01-13
Contact:
HaiYing XU
摘要:
【目的】探讨低温贮藏过程中游离态和糖苷结合态单萜组分和含量变化趋势,从更加全面的代谢物角度诠释玫瑰香气成分变化规律,为更好地研究贮藏期间葡萄风味品质的变化和最佳贮藏条件的建立提供理论依据。【方法】以两个优新葡萄品种‘瑞都红玫’和‘瑞都早红’为试材,选取健康果实预冷至-1—0℃,放入PE葡萄保鲜膜中,封口入库((2±1)℃,90% RH)。每15 d取样一次,共取样3次,常规方法测定果实理化指标和外观品质指标;顶空固相微萃取结合气相色谱与质谱联用技术(SPME-GC-MS)测定果实中游离态和糖苷结合态单萜类组分和含量的变化。【结果】低温贮藏过程中,两个品种葡萄果实可溶性固形物含量呈现降低的趋势,可滴定酸含量变化趋势略有不同;失重率、烂果率、落粒率和果梗褐变指数随着低温贮藏时间延长而升高,果柄耐拉力随贮藏时间延长而降低。化合物分析结果显示,里那醇、β-月桂烯、β-cis-罗勒烯、柠檬烯、cis-呋喃型氧化里那醇和香叶醇等是两个葡萄品种的主要游离态单萜成分;而主要糖苷结合态单萜有里那醇、β-月桂烯、香叶醇、香叶醛、β-cis-罗勒烯和橙花醚等。低温贮藏过程中,总游离态单萜含量显著降低,28种游离态单萜的变化趋势聚为4类;相较于贮藏初期,大部分游离态化合物含量呈现降低趋势。主成分分析结果显示香叶酸(M28)、橙花醚(M14)、里那醇(M16)和4-松油烯醇(M17)等游离态单萜可以作为不同贮藏时间样品区分的主要贡献差异单萜成分。各个糖苷结合态单萜在贮藏过程中也表现不同的变化趋势,总结合态单萜含量与游离态单萜呈现相反的趋势。结合态氧化玫瑰是区分两个品种的主要标记物。【结论】‘瑞都红玫’低温耐贮性优于‘瑞都早红’;低温贮藏会引起游离态单萜含量显著降低;游离态香叶酸、橙花醚等化合物可以作为不同时间贮藏样品区分的主要成分;结合态氧化玫瑰可作为品种区分的标记物。
王慧玲,闫爱玲,孙磊,张国军,王晓玥,任建成,徐海英. 低温贮藏对鲜食葡萄果实中单萜化合物的影响[J]. 中国农业科学, 2021, 54(1): 164-178.
WANG HuiLing,YAN AiLing,SUN Lei,ZHANG GuoJun,WANG XiaoYue,REN JianCheng,XU HaiYing. Effects of Low Temperature Storage on Monoterpenes in Table Grape[J]. Scientia Agricultura Sinica, 2021, 54(1): 164-178.
表1
两种鲜食葡萄在低温贮藏过程中表观品质指标变化"
品种 Variety | 贮藏天数 Days after storage (d) | 失重率 Weight loss (%) | 果柄耐拉力 Berry retention force (N) | 烂果率 Percentage of decayed (%) | 落粒率 Berry drop ratio (%) | 果梗褐变指数 Browning index (%) |
---|---|---|---|---|---|---|
瑞都红玫RDHM | 0 | 0 | 3.94±0.11 | 0 | 0 | 0 |
15 | 0.67±0.13 | 3.95±0.18 | 5.66±1.50 | 0 | 0 | |
30 | 2.15±0.80 | 4.49±0.22 | 9.26±1.654 | 14.04±2.22 | 30.00±2.10 | |
45 | 5.46±0.64 | 2.82±0.14 | 29.82±2.31 | 14.81±1.60 | 35.00±3.50 | |
瑞都早红RDZH | 0 | 0 | 3.62±0.37 | 0 | 0 | 0 |
15 | 1.39±0.37 | 4.04±0.16 | 1.96±0.96 | 4.84±1.40 | 0 | |
30 | 2.05±0.66 | 3.42±0.14 | 20.97±3.12 | 24.49±2.02 | 2.50±1.50 | |
45 | 8.57±0.90 | 2.06±0.21 | 77.38±8.42 | 50.00±13.54 | 35.00±3.00 |
表2
低温贮藏过程中两种鲜食葡萄果实中游离态单萜含量变化"
编号 Code | 化合物 Compound | 品种 Variety | 贮藏天数Days after storage(d) | |||
---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | |||
M1 | β-月桂烯 β-Myrcene | 瑞都红玫 RDHM | 72.62±1.79a | 29.98±1.07c | 10.10±2.19d | 35.39±0.64b |
瑞都早红 RDZH | 48.94±0.12a | 36.79±0.74b | 25.38±1.81c | 8.84±0.04d | ||
M2 | 柠檬烯 Limonene | 瑞都红玫 RDHM | 30.66±1.24a | 11.71±0.50c | 7.40±0.12d | 24.2±0.32b |
瑞都早红 RDZH | 12.36±0.12c | 15.17±0.90a | 13.04±0.22b | 6.37±0.27d | ||
M3 | 水芹烯 phellandrene | 瑞都红玫RDHM | 7.79±0.14a | 5.78±0.30bc | 1.87±0.08c | 6.07±0.03b |
瑞都早红 RDZH | 6.06±0.01a | 5.82±0.12b | 5.77±0.12c | 1.65±0.03d | ||
M4 | β-trans-罗勒烯 β-trans-Ocimene | 瑞都红玫 RDHM | 19.74±0.84a | 7.33±0.30c | 3.83±0.03d | 12.45±0.01b |
瑞都早红RDZH | 9.98±0.07a | 9.58±0.37b | 8.98±0.31c | 3.11±0.02d | ||
M5 | γ-松油烯 γ-Terpinen | 瑞都红玫 RDHM | 3.27±0.05a | 1.55±0.12b | 0.67±0.06c | 3.05±0.01a |
瑞都早红 RDZH | 1.81±0.10c | 2.44±0.18a | 2.10±0.01b | 0.52±0.01d | ||
M6 | β-cis-罗勒烯 β-cis-Ocimene | 瑞都红玫 RDHM | 44.57±2.22a | 14.26±0.73c | 6.09±0.13d | 28.24±0.23b |
瑞都早红 RDZH | 19.69±0.19a | 19.75±0.92a | 13.09±0.72b | 4.52±0.02c | ||
M7 | 异松油烯 Terpinolen | 瑞都红玫 RDHM | 9.87±0.43a | 4.75±0.14c | 3.88±0.41d | 8.84±0.06b |
瑞都早红 RDZH | 4.30±0.05c | 5.74±0.19b | 6.60±0.06a | 1.93±0.20d | ||
M8 | cis-氧化玫瑰 cis Rose oxide | 瑞都红玫 RDHM | 0.20±0.01 | tr | tr | tr |
瑞都早红 RDZH | 0.38±0.03b | 0.72±0.03a | 0.73±0.04a | tr | ||
M9 | trans-氧化玫瑰 trans-Rose oxide | 瑞都红玫 RDHM | tr | nd | nd | nd |
瑞都早红 RDZH | tr | tr | 0.43±0.07 | tr | ||
M10 | 别罗勒烯 Allo-Ocimene | 瑞都红玫 RDHM | 16.13±0.64a | 5.76±0.26c | 3.28±0.05d | 10.41±0.66b |
瑞都早红 RDZH | 7.76±0.05a | 7.76±0.41a | 6.49±0.38b | 2.37±0.07c | ||
M11 | (E,Z)-别罗勒烯 (E,Z)-Allo-Ocimene | 瑞都红玫 RDHM | 6.85±0.19a | 4.27±0.06c | 1.46±0.01d | 5.01±0.35b |
瑞都早红 RDZH | 4.92±0.04a | 4.70±0.12b | 4.33±0.13c | 0.90±0.01d | ||
M12 | cis-呋喃型氧化里那醇 cis-furan linalool oxide | 瑞都红玫 RDHM | 25.02±1.17a | 12.55±0.26c | 2.61±0.07d | 11.23±2.07b |
瑞都早红 RDZH | 14.47±0.27c | 24.99±0.71a | 15.19±1.48b | 3.09±0.04c | ||
M13 | trans-呋喃型氧化里那醇 trans-furan linalool oxide | 瑞都红玫 RDHM | 7.38±0.09a | 5.68±0.21b | 1.20±0.04c | 5.75±0.94b |
瑞都早红 RDZH | 7.56±0.30b | 9.19±0.13a | 8.68±1.03a | 2.51±0.06c | ||
M14 | 橙花醚 Nerol oxide | 瑞都红玫 RDHM | 15.87±1.64b | 2.74±0.32c | 1.69±1.12d | 16.73±3.60a |
瑞都早红 RDZH | 3.43±0.37c | 15.44±2.20a | 15.18±1.43b | 1.98±0.13d | ||
M15 | 香茅醛 Citronellal | 瑞都红玫 RDHM | 3.08±0.02a | 0.62±0.10c | 0.71±0.04c | 2.86±0.13b |
瑞都早红 RDZH | 1.10±0.03c | 1.37±0.03b | 1.86±0.03a | 0.34±0.04d | ||
M16 | 里那醇 Linalool | 瑞都红玫 RDHM | 448.10±29.13a | 117.34±1.87b | 18.43±1.53c | 113.71±34.04b |
瑞都早红 RDZH | 317.18±1.10a | 199.00±7.22b | 186.07±37.64c | 28.51±0.60d | ||
M17 | 4-松油烯醇 4-Terpineol | 瑞都红玫 RDHM | 2.73±0.04a | 0.61±0.08b | 0.24±0.02c | 2.65±0.05a |
瑞都早红 RDZH | 0.54±0.07c | 1.10±0.11b | 3.26±0.03a | 0.19±0.02d | ||
M18 | 橙花醛 Neral | 瑞都红玫 RDHM | 0.83±0.04b | 0.67±0.03c | 1.20±0.08a | 0.54±0.08d |
瑞都早红 RDZH | 0.55±0.02c | 0.18±0.02d | 0.63±0.07b | 0.83±0.05a | ||
M19 | α-衣兰油烯 α-muurolene | 瑞都红玫 RDHM | 0.33±0.01a | tr | 0.12±0.00c | 0.30±0.01b |
瑞都早红 RDZH | 0.27±0.01a | 0.13±0.01c | 0.18±0.01b | 0.10±0.01d | ||
续 | ||||||
编号 Code | 化合物 Compound | 品种 Variety | 贮藏天数Days after storage(d) | |||
0 | 15 | 30 | 45 | |||
M20 | α-萜品醇 α-Terpineol | 瑞都红玫 RDHM | 15.27±1.02a | 5.91±0.24c | 4.85±0.09d | 13.10±0.62b |
瑞都早红 RDZH | 4.97±0.06c | 7.46±0.36a | 6.42±1.22b | 4.48±0.05d | ||
M21 | 香叶醛 geranial | 瑞都红玫 RDHM | 8.13±0.29a | 3.70±0.02d | 4.46±0.12c | 6.70±0.42b |
瑞都早红 RDZH | 6.94±0.21a | 4.99±0.10b | 3.77±0.28c | 3.32±0.04d | ||
M22 | β-香茅醇 β-Citronellol | 瑞都红玫 RDHM | 3.82±0.03a | 3.58±0.01c | 1.41±0.05d | 3.67±0.02b |
瑞都早红 RDZH | 4.47±0.04a | 4.29±0.03b | 3.49±0.10c | 3.66±0.01d | ||
M23 | γ-香叶醇 γ-geraniol | 瑞都红玫 RDHM | 1.61±0.01a | 0.42±0.01b | 0.47±0.01b | 1.55±0.01a |
瑞都早红 RDZH | 1.51±0.01a | 0.74±0.03c | 0.87±0.02b | 0.21±0.02d | ||
M24 | 橙花醇 Nerol | 瑞都红玫 RDHM | 5.39±0.12a | 3.70±0.02c | 3.74±0.01c | 4.69±0.11b |
瑞都早红 RDZH | 4.13±0.01b | 4.14±0.04b | 4.60±0.16a | 1.76±0.11c | ||
M25 | cis-异香叶醇 cis-isogeraniol | 瑞都红玫 RDHM | 0.17±0.01a | 0.15±0.01a | 0.16±0.01a | 0.17±0.01a |
瑞都早红 RDZH | 0.16±0.01a | 0.17±0.01a | 0.09±0.01b | tr | ||
M26 | trans-异香叶醇 trans-isogeraniol | 瑞都红玫 RDHM | tr | tr | tr | nd |
瑞都早红 RDZH | tr | tr | tr | nd | ||
M27 | 香叶醇 Geraniol | 瑞都红玫 RDHM | 23.67±0.68a | 10.72±0.06d | 12.63±0.05c | 16.08±0.85b |
瑞都早红 RDZH | 17.02±0.05a | 14.37±0.19b | 13.63±0.91b | 7.70±0.22c | ||
M28 | 香叶酸 Geranic acid | 瑞都红玫 RDHM | 3.89±0.11a | 0.23±0.05c | 0.61±0.18b | 4.01±0.05a |
瑞都早红 RDZH | 2.74±1.73c | 4.22±0.26b | 4.74±0.03a | 0.34±0.30d |
表3
低温贮藏过程中两种鲜食葡萄果实中糖苷结合态单萜含量变化"
编号 Code | 化合物 Compound | 品种 Variety | 贮藏天数Days after storage (d) | |||
---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | |||
CM1 | β-月桂烯 β-Myrcene | 瑞都红玫 RDHM | 104.17±3.62a | 66.87±6.59c | 87.94±4.74b | 53.44±0.70d |
瑞都早红 RDZH | 71.91±6.55a | 81.90±0.69b | 67.63±0.74c | 78.49±0.91d | ||
CM2 | 柠檬烯 Limonene | 瑞都红玫 RDHM | 35.58±0.14a | 22.81±2.46c | 32.67±1.65b | 21.00±0.50d |
瑞都早红 RDZH | 28.28±2.87c | 37.00±0.12a | 33.91±0.49b | 27.44±0.22d | ||
CM3 | 水芹烯 phellandrene | 瑞都红玫 RDHM | 21.63±0.45a | 12.69±1.74bc | 18.16±1.35b | 10.54±0.02d |
瑞都早红 RDZH | 15.25±1.41c | 18.37±0.26a | 15.61±0.19b | 15.91±0.02b | ||
CM4 | β-trans-罗勒烯 β-trans-Ocimene | 瑞都红玫 RDHM | 29.91±0.65a | 19.52±1.88c | 27.09±1.87b | 17.66±0.74d |
瑞都早红 RDZH | 21.77±1.69c | 23.95±0.29a | 21.51±0.18c | 22.97±0.20b | ||
CM5 | γ-松油烯 γ-Terpinen | 瑞都红玫 RDHM | 3.49±0.10a | 1.96±0.21c | 2.67±0.16b | 1.77±0.19d |
瑞都早红 RDZH | 2.42±0.20c | 3.06±0.06a | 2.75±0.03b | 2.35±0.02d | ||
CM6 | β-cis-罗勒烯 β-cis-Ocimene | 瑞都红玫 RDHM | 49.82±1.26a | 29.78±3.29c | 43.87±2.66b | 24.85±3.11d |
瑞都早红 RDZH | 34.02±3.27c | 39.01±0.33a | 34.21±0.38c | 36.25±0.66b | ||
CM7 | 异松油烯 Terpinolen | 瑞都红玫 RDHM | 9.39±0.21a | 3.23±0.38d | 5.35±0.36b | 3.81±0.58c |
瑞都早红 RDZH | 4.61±0.52c | 6.33±0.05b | 7.69±0.20a | 4.34±0.09c | ||
CM8 | cis-氧化玫瑰 cis-Rose oxide | 瑞都红玫 RDHM | tr | tr | tr | tr |
瑞都早红 RDZH | 3.06±0.15c | 3.35±0.01b | 3.77±0.04a | 2.54±0.03d | ||
续 | ||||||
编号 Code | 化合物 Compound | 品种 Variety | 贮藏天数Days after storage (d) | |||
0 | 15 | 30 | 45 | |||
CM9 | trans-氧化玫瑰 trans-Rose oxide | 瑞都红玫 RDHM | tr | nd | nd | nd |
瑞都早红 RDZH | 2.89±0.02c | 2.97±0.02b | 3.03±0.01a | tr | ||
CM10 | 别罗勒烯 Allo-Ocimene | 瑞都红玫 RDHM | 20.36±0.51a | 14.61±1.21c | 19.20±0.32b | 11.51±1.92d |
瑞都早红 RDZH | 16.38±1.06c | 17.93±0.10a | 16.15±0.03d | 17.03±0.15b | ||
CM11 | (E,Z)-别罗勒烯 (E,Z)-Allo-Ocimene | 瑞都红玫 RDHM | 10.27±0.15a | 5.45±0.61c | 9.21±0.61b | 4.49±0.76d |
瑞都早红 RDZH | 6.83±1.04c | 8.23±0.04a | 6.35±0.12d | 7.43±0.05b | ||
CM12 | cis-呋喃型氧化里那醇 cis-furan linalool oxide | 瑞都红玫 RDHM | 32.46±1.25a | 12.39±0.37d | 17.31±0.29b | 14.71±1.96c |
瑞都早红 RDZH | 31.09±1.09b | 51.48±3.39a | 66.26±5.82a | 28.75±0.73c | ||
CM13 | trans-呋喃型氧化里那醇 trans-furan linalool oxide | 瑞都红玫 RDHM | 6.15±0.04a | 5.15±0.01d | 5.26±0.01c | 5.42±0.16b |
瑞都早红 RDZH | 5.77±0.11b | 6.50±0.21a | 8.27±0.61a | 5.58±0.06c | ||
CM14 | 橙花醚 Nerol oxide | 瑞都红玫 RDHM | 40.48±1.11a | 18.96±1.54d | 26.04±0.81b | 19.30±3.26c |
瑞都早红 RDZH | 31.93±1.95c | 37.62±1.82b | 39.80±1.12a | 31.49±0.37c | ||
CM15 | 香茅醛 Citronellal | 瑞都红玫 RDHM | 4.65±0.13b | 3.22±0.01c | 5.26±0.21a | 2.36±0.31d |
瑞都早红 RDZH | 3.97±0.31c | 4.27±0.19a | 2.62±0.07d | 4.19±0.38b | ||
CM16 | 里那醇 Linalool | 瑞都红玫 RDHM | 170.62±3.37a | 85.49±3.52b | 76.27±0.74c | 68.43±13.08d |
瑞都早红 RDZH | 79.89±4.25c | 123.71±3.55b | 140.54±4.86a | 62.86±0.93d | ||
CM17 | 4-松油烯醇 4-Terpineol | 瑞都红玫 RDHM | 1.00±0.01a | 0.47±0.01c | 0.72±0.07b | 0.70±0.05b |
瑞都早红 RDZH | 0.72±0.01b | 0.76±0.01b | 0.92±0.03a | 0.61±0.05c | ||
CM18 | 橙花醛 Neral | 瑞都红玫 RDHM | 19.16±0.67b | 19.89±0.04b | 24.73±0.92a | 5.79±1.46c |
瑞都早红 RDZH | 22.79±0.05c | 23.09±3.22b | 23.61±0.27b | 26.43±0.68a | ||
CM19 | α-衣兰油烯 α-muurolene | 瑞都红玫 RDHM | 0.92±0.01a | 0.74±0.01b | 0.98±0.00a | 0.59±0.06c |
瑞都早红 RDZH | 0.98±0.03a | 0.98±0.04a | 0.94±0.01c | 0.96±0.01b | ||
CM20 | α-萜品醇 α-Terpineol | 瑞都红玫 RDHM | 22.75±0.08a | 5.25±0.36c | 21.57±0.05a | 14.17±5.62b |
瑞都早红 RDZH | 14.09±1.47c | 21.75±0.09b | 22.44±0.03a | 6.30±0.32d | ||
CM21 | 香叶醛 Geranial | 瑞都红玫 RDHM | 57.75±0.08b | 54.82±0.10c | 67.55±2.05a | 29.45±3.76d |
瑞都早红 RDZH | 51.72±0.23c | 56.79±5.86b | 51.57±0.91c | 60.27±0.09a | ||
CM22 | β-香茅醇 β-Citronellol | 瑞都红玫 RDHM | 7.29±0.22a | 5.75±0.49b | 7.19±0.23a | 2.95±0.64c |
瑞都早红 RDZH | 19.41±0.12b | 19.83±0.07a | 19.22±0.07c | 19.07±0.04d | ||
CM23 | γ-香叶醇 γ-geraniol | 瑞都红玫 RDHM | 7.63±0.05a | 3.35±0.03b | 7.61±0.04a | 1.83±0.39c |
瑞都早红 RDZH | 5.59±2.73b | 7.57±0.03a | 2.62±0.09c | 7.54±0.01a | ||
CM24 | 橙花醇 Nerol | 瑞都红玫 RDHM | 20.77±0.24b | 20.22±0.23b | 21.82±0.14a | 17.83±0.33c |
瑞都早红 RDZH | 22.46±0.24b | 23.96±0.26a | 19.79±0.07d | 20.94±0.15c | ||
CM25 | cis-异香叶醇 cis-isogeraniol | 瑞都红玫 RDHM | 0.85±0.02a | 0.80±0.01b | 0.80±0.01b | tr |
瑞都早红 RDZH | 0.82±0.02b | 0.86±0.01a | tr | 0.86±0.01a | ||
CM26 | trans-异香叶醇 trans-isogeraniol | 瑞都红玫 RDHM | 0.78±0.01b | 0.81±0.01a | 0.81±0.01a | nd |
瑞都早红 RDZH | tr | tr | tr | nd | ||
CM27 | 香叶醇 Geraniol | 瑞都红玫 RDHM | 74.25±2.45b | 66.16±1.66c | 84.83±2.22a | 42.11±3.66d |
瑞都早红 RDZH | 64.09±2.65b | 63.96±2.21c | 45.40±0.17d | 71.37±0.05a | ||
CM28 | 香叶酸 Geranic acid | 瑞都红玫 RDHM | 0.42±0.11d | 2.42±0.04a | 1.80±0.28b | 0.85±0.12c |
瑞都早红 RDZH | 3.44±2.44b | 3.03±1.49c | 4.57±2.55a | 2.87±0.13d |
[1] |
MAOZ I, DE ROSSO M, KAPLUNOV T, VEDOVA A D, SELA N, FLAMINI R, LEWINSOHN E, LICHTER A. Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Scientific Reports, 2019,9:2917.
pmid: 30814549 |
[2] |
LIN J, MÉLANIE M, CANTU D. The genetic basis of grape and wine aroma. Horticulture Research, 2019,6:81.
pmid: 31645942 |
[3] | 涂崔, 潘秋红, 朱保庆, 吴玉文, 王志群, 段长青. 葡萄与葡萄酒单萜化合物的研究进展. 园艺学报, 2011,38(7):1397-1406. |
TU C, PAN Q H, ZHU B Q, WU Y W, WANG Z Q, DUAN C Q. Progress in study of monoterpene compounds in grape and wine. Acta Horticulturae Sinica, 2011,38(7):1397-1406. (in Chinese) | |
[4] | MATEO J J, JIMÉNEZ M. Monoterpenes in grape juice and wines. Journal of Chromatography A, 2000,881(1):557-567. |
[5] | LI X Y, WEN Y Q, MENG N, QIAN X, PAN Q H. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Frontier Plant Science, 2017,8:1226. |
[6] |
EL HADI M A M, ZHANG F J, WU F F, ZHOU C H, TAO J. Advances in fruit aroma volatile research. Molecules, 2013,18(7):8200-8229.
pmid: 23852166 |
[7] | ALEM H, RIGOU P, SCHNEIDER R, OJEDAA H, TORREGROSA L. Impact of agronomic practices on grape aroma composition: A review. Journal of Agricultural and Food Chemistry, 2019,99(3):975-985. |
[8] | 王慧玲, 王晓玥, 闫爱玲, 孙磊, 张国军, 任建成, 徐海英. 不同架式‘爱神玫瑰’葡萄果实成熟期间单萜积累及相关基因的表达. 中国农业科学, 2019,52(7):1136-1149. |
WANG H L, WANG X Y, YAN A L, SUN L, ZHANG G J, REN J C, XU H Y. The accumulation of monoterpenes and the expression of its biosynthesis related genes in ‘Aishen Meigui’ grape berries cultivated in different trellis systems during ripening stage. Scientia Agricultura Sinica, 2019,52(7):1136-1149. (in Chinese) | |
[9] |
YUAN X, WU Z, LI H, WANG Y, LIU F, CAI H, NEWLOVEA A A, WANG Y. Biochemical and proteomic analysis of ‘Kyoho’ grape (Vitis labruscana) berries during cold storage. Postharvest Biology and Technology, 2014,88:79-87.
doi: 10.1016/j.postharvbio.2013.10.001 |
[10] | BARCHENGER D W, CLARK J R, THRELFALL R T, HOWARD L R, BROWNMILLER C R. Evaluation of physicochemical and storability attributes of muscadine grapes. (Vitis rotundifolia Michx.). Hortscience, 2015,50(1):104-111. |
[11] |
CRUPI P, PICHIERRI A, BASILE T, ANTONACCI D. Postharvest stilbenes and flavonoids enrichment of table grape cv redglobe (Vitis vinifera L.) as affected by interactive uv-c exposure and storage conditions. Food Chemistry, 2013,141(2):802-808.
doi: 10.1016/j.foodchem.2013.03.055 pmid: 23790850 |
[12] | 成明. 不同贮藏条件对葡萄香气成分变化影响的研究[D]. 天津: 天津科技大学, 2011. |
CHENG M. Study on aroma compounds of grape under different storage conditions during storage period[D]. Tianjin: Tianjin University of Science and Technology, 2011. (in Chinese) | |
[13] |
张鹏, 邵丹, 李江阔, 颜廷才, 陈绍慧. 葡萄冷藏时间对贮后货架期芳香物质的影响. 食品科学, 2016,37(2):218-224.
doi: 10.1111/jfds.1972.37.issue-2 |
ZHANG P, SHAO D, LI J K, YAN T C, CHEN S H. Effects of cold storage time on aroma components of grape during subsequent shelf life. Food Science, 2016,37(2):218-224. (in Chinese)
doi: 10.1111/jfds.1972.37.issue-2 |
|
[14] | MATSUMOTO H, IKOMA Y. Effect of postharvest temperature on the muscat flavor and aroma volatile content in the berries of ‘shine muscat’ (Vitis labruscana baily × V. vinifera L.). Postharvest Biology and Technology, 2016,112:256-265. |
[15] | 张国军, 闫爱玲, 孙磊, 王慧玲, 王晓玥, 任建成, 徐海英. 红色玫瑰香味葡萄新品种—‘瑞都红玫’的选育. 果树学报, 2015,32(5):991-993. |
ZHANG G J, YAN A L, SUN L, WANG H L, WANG X Y, REN J C, XU H Y. A new red muscat flavor table grape cultivar ‘Ruidu Hongmei’. Journal of Fruit Science, 2015,32(5):991-993. (in Chinese) | |
[16] | 孙磊, 张国军, 闫爱玲, 徐海英. 葡萄新品种—‘瑞都早红’的选育. 果树学报, 2016,33(1):120-123. |
SUN L, ZHANG G J, YAN A L, XU H Y. A new table grape cultivar- ‘Ruiduzaohong’. Journal of Fruit Science, 2016,33(1):120-123. (in Chinese) | |
[17] |
WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015,15:240.
pmid: 26444528 |
[18] | WU Y W, ZHU B Q, TU C, DUAN C Q, PAN Q H. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage. Journal of Agriculture and Food Chemistry, 2011,59(9):4923-4931. |
[19] |
孙磊, 朱保庆, 王晓玥, 孙晓荣, 闫爱玲, 张国军, 王慧玲, 徐海英. 早中熟鲜食葡萄5个品种及其亲本果实单萜成分分析. 园艺学报, 2016,43(11):2109-2118.
doi: 10.16420/j.issn.0513-353x.2016-0164 |
SUN L, ZHU B Q, WANG X Y, SUN X R, YAN A L, ZHANG G J, WANG H L, XU H Y. Monoterpene analysis of five middle-early ripening table grape varieties and their parents. Acta Horticulturae Sinica, 2016,43(11):2109-2118. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0164 |
|
[20] |
RUIZ-GARCÍA L, HELLIN P, FLORES P, FENOLL J. Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chemistry, 2014,154:151-157.
doi: 10.1016/j.foodchem.2014.01.005 pmid: 24518327 |
[21] |
LAN Y B, QIAN X, YANG Z J, XIANG X F, YANG W X, LIU T, ZHU B Q, PAN Q H, DUAN C Q. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’ grapes in Northeastern China. Food Chemistry, 2016,212:172-182.
pmid: 27374521 |
[22] |
MARTIN D M, CHIANG A, LUND S T, BOHLMANN J. Biosynthesis of wine aroma: Transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012,236(3):919-929.
doi: 10.1007/s00425-012-1704-0 pmid: 22824963 |
[23] |
FENOLL J, MANSO A, HELLIN P, RUIZ L, FLORES P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 2009,114:420-428.
doi: 10.1016/j.foodchem.2008.09.060 |
[24] |
WU Y S, ZHANG W W, SONG S R, XU W P, ZHANG C X, MA C, WANG L, WANG S P. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca×V. vinifera). Food Chemistry, 2020,309:125778.
doi: 10.1016/j.foodchem.2019.125778 pmid: 31704071 |
[25] | SEFTON M A, FRANCIS I L, WILLIAMS P J. Free and bound volatile secondary metabolites of Vitis vinifera grape cv. Sauvignon Blanc. Journal of Food Science, 1994,59(1):142-147. |
[26] |
OBENLAND D, COLLIN S, MACKEY B, SIEVERT J, ARPAIA M L. Storage temperature and time influences sensory quality of mandarins by altering soluble solids acidity and aroma volatile composition. Postharvest Biology and Technology, 2011,59:187-193.
doi: 10.1016/j.postharvbio.2010.09.011 |
[27] |
OBENLAND D, COLLIN S, SIEVERT J, ARPAIA M L. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biology and Technology, 2013,82:6-14.
doi: 10.1016/j.postharvbio.2013.02.013 |
[28] |
ZHANG B, XI W P, WEI W W, SHEN J Y, FERGUSON I, CHEN K S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biology and Technology, 2011,60(1):7-16.
doi: 10.1016/j.postharvbio.2010.09.012 |
[29] |
ZHU X Y, LUO J, LI Q M, LI J, LIU T X, WANG R, CHEN W X, LI X P. Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 2018,146:68-78.
doi: 10.1016/j.postharvbio.2018.08.015 |
[30] | ZHANG B, TIEMAN D M, JIAO C, XU Y, KLEE H J. Chilling- induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences of the USA, 2016,113(44):12580-12585. |
[31] |
ILC T, WERCKREICHHART D, NAVROT N. Meta-analysis of the core aroma components of grape and wine aroma. Frontiers in Plant Science, 2016,7:1472.
pmid: 27746799 |
[32] |
MORALES M L, CALLEJÓN R M, UBEDA C, GUERREIRO A, GAGO C, MIGUEL M G, ANTUNES M D. Effect of storage time at low temperature on the volatile compound composition of Sevillana and Maravilla raspberries. Postharvest Biology and Technology, 2014,96:128-134.
doi: 10.1016/j.postharvbio.2014.05.013 |
[33] |
TIETEL Z, LEWINSOHN E, FALLIK E, PORAT R. Importance of storage temperatures in maintaining flavor and quality of mandarins. Postharvest Biology and Technology, 2012,64:175-182.
doi: 10.1016/j.postharvbio.2011.07.009 |
[1] | 徐倩, 王晗, 马赛, 胡秋辉, 马宁, 苏安祥, 李辰, 马高兴. 杏鲍菇多糖及其消化产物对淀粉消化酶的抑制及相互作用[J]. 中国农业科学, 2023, 56(2): 357-367. |
[2] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[3] | 李旭飞,杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和. 葡萄VlCKX4表达特性分析与转录调控预测[J]. 中国农业科学, 2023, 56(1): 144-155. |
[4] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[5] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[6] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[7] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[8] | 唐子云,胡健欣,陈进,陆毅兴,孔伶俐,刁露,张发福,熊文广,曾振灵. 动物源金黄色葡萄球菌生物被膜形成能力与分子分型关系研究[J]. 中国农业科学, 2022, 55(3): 602-612. |
[9] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[10] | 王博,覃富强,邓凤莹,罗惠格,陈祥飞,成果,白扬,黄小云,韩佳宇,曹雄军,白先进. ‘阳光玫瑰’葡萄一年两收果实类黄酮组分及含量差异分析[J]. 中国农业科学, 2022, 55(22): 4473-4486. |
[11] | 董泽宽,张水勤,李燕婷,高强,赵秉强,袁亮. 添加螯合剂对磷酸二铵溶解、固定及转化的影响[J]. 中国农业科学, 2022, 55(21): 4225-4236. |
[12] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[13] | 马玉全,王小龙,李玉梅,王孝娣,刘凤之,王海波. 不同砧木对葡萄‘87-1’氮磷钾等养分吸收利用的影响[J]. 中国农业科学, 2022, 55(19): 3822-3830. |
[14] | 冀晓昊,刘凤之,王宝亮,刘培培,王海波. 葡萄醇酰基转移酶编码基因遗传变异研究[J]. 中国农业科学, 2022, 55(14): 2797-2811. |
[15] | 杨盛迪,孟祥轩,郭大龙,裴茂松,刘海楠,韦同路,余义和. SO2引起巨峰葡萄采后落粒的共表达网络和转录调控分析[J]. 中国农业科学, 2022, 55(11): 2214-2226. |
|