中国农业科学 ›› 2019, Vol. 52 ›› Issue (14): 2500-2514.doi: 10.3864/j.issn.0578-1752.2019.14.009
收稿日期:
2019-02-25
接受日期:
2019-05-07
出版日期:
2019-07-16
发布日期:
2019-07-26
通讯作者:
张剑侠
作者简介:
丁兰,E-mail: Dyrope@163.com。
基金资助:
DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia()
Received:
2019-02-25
Accepted:
2019-05-07
Online:
2019-07-16
Published:
2019-07-26
Contact:
JianXia ZHANG
摘要:
【目的】通过生物信息学分析明确SAP(Stress Associated Protein)家族在葡萄基因组中的数量、结构,利用qRT-PCR技术分析SAP家族的生物节律和在激素、非生物胁迫处理下的表达模式,为进一步探究SAP家族在葡萄中的作用奠定基础。【方法】在前期从山葡萄‘双优’(Vitis amurensis cv. Shuangyou)和欧洲葡萄‘红地球’(Vitis vinifera cv. Red Globe)0℃寒胁迫下转录组数据库中筛选出表达量明显上调的基因SAP15基础上,利用NCBI和葡萄基因组数据库中的BLAST功能,根据SAP家族的保守结构域,鉴定葡萄基因组中的SAP。利用生物信息学软件DNAMAN5.0、MEME、GSDS2.0、ExPASy和MEGA6等对VvSAPs序列、基因结构、蛋白质结构、理化性质、染色体定位和进化树等进行分析。采用qRT-PCR方法检测VvSAP家族的生物节律和在激素、逆境处理下的表达特征。【结果】从葡萄(Vitis vinifera)全基因组中鉴定得到15个SAP家族成员,均含有AN1保守结构域,大多含有A20保守结构域。按照其保守结构域和在染色体上的位置,依次命名为VvSAP1—VvSAP15,可分为Class Ⅰ、Class Ⅱ和Class Ⅲ三类。理化性质分析表明,VvSAP家族编码氨基酸数目介于109—293,理论等电点分布在7.99—9.68。染色体定位分析发现,该基因家族的15个基因分布于葡萄的9条染色体上,其中第8条染色体上分布最多,有3个VvSAP。亚细胞定位分析表明,VvSAP家族主要在细胞核、叶绿体和细胞骨架中进行表达。VvSAP家族的二级结构主要以无规则卷曲和α-螺旋为主。基因结构分析表明,VvSAP1—VvSAP12的DNA序列中均无内含子,VvSAP13—VvSAP15的DNA序列中有1个内含子,基因结构高度保守。qRT-PCR分析结果表明,在VvSAP家族成员中,VvSAP1和VvSAP9在无处理和各处理下(激素和非生物胁迫)均表达极低或不表达,初步鉴定为假基因。除VvSAP10在400 mmol·L -1 NaCl处理下呈下调表达,其余基因均在50 μmol·L -1 ABA、100 μmol·L -1SA和400 mmol·L -1NaCl处理下呈上调表达,其中,VvSAP10—VvSAP14显著响应50 μmol·L -1 ABA胁迫,处理24 h后相对表达量分别上调为0 h的37.19、36.63、21.69、58.34和267.35倍;VvSAP8和VvSAP11在NaCl处理4 h后相对表达量最高,分别为0 h的13.16和12.42倍;在4℃低温胁迫下,相对表达量上调最高的是VvSAP15,处理后8 h相对表达量为0 h的35.90倍。 【结论】从葡萄基因组中共鉴定出15个SAP家族成员,初步鉴定得出VvSAP1和VvSAP9为假基因,15个基因分别分布于9条染色体上,并且结构进化高度保守。所有成员均相响应逆境,且均有昼夜节律变化,但该基因家族成员在不同逆境胁迫下的响应程度和在不同时间点的表达模式存在一定的差异。
丁兰,顾宝,李培楹,舒欣,张剑侠. 葡萄SAP家族的鉴定与表达分析[J]. 中国农业科学, 2019, 52(14): 2500-2514.
DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia. Genome-Wide Identification and Expression Analysis of SAP Family in Grape[J]. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514.
表1
VvSAP家族表达分析的实时荧光定量引物"
基因Gene | 上游引物(5′-3′)Forward primer(5′-3′) | 下游引物(5′-3′) Reverse primer(5′-3′) |
---|---|---|
VvSAP1 | TCCACGAAGAAGTCGGAGCA | GCAAACGATGCTTCCCACAG |
VvSAP2 | TGAGCTGCAACAAGAAGGTG | TCAGCCTTAACCACCGGATT |
VvSAP3 | ATTGTCGATGCGGTCACCTT | CCTTGACAACAGGGTTGGCT |
VvSAP4 | CTGCAATTCTCTGCGCCAAT | CTTCCTCGATTCCCGAACC |
VvSAP5 | GCGGCCAATGAAATCACTGTT | ACAGAACGTGATCCCACACC |
VvSAP6 | AGTCCAAGGTCAAGGAGGGA | TGCAGCAGTCCGGTAATCAA |
VvSAP7 | TTCTGCGCTGAGCATCGGTA | CAGACTCTCACGATCTTCGCA |
VvSAP8 | TTGTGCTTCACCAAGCGAGA | CGGTCCTGTAGTCGAATGGG |
VvSAP9 | GGTGTGGGAGTATGTTCT | CATAACCTTCCTGGTAACTTC |
VvSAP10 | TTGTTACCTCCATGACTCAATTATC | ACATACTTCCACATCGGCACTT |
VvSAP11 | CATGAGCTGCAACAAGAAGG | AGCCTTAACCACCGGATTAG |
VvSAP12 | CCGAAACTCTAACCCTATGCG | TTCACCTCCCTCCTTCTCACA |
VvSAP13 | GAGGGAGGTGAACTGGTGCT | GTCCTGCCGCCTTGTAATCG |
VvSAP14 | GATGGAGTGGGACAGAGCAG | CTTACAGCAGCTCGGTTGGA |
VvSAP15 | ACTGCGACCCGTCAAAGAAA | AACCGATGCTTGAGGCAGAA |
表2
VvSAP家族成员蛋白质的理化性质"
基因 Gene | 基因号 Gene ID | 氨基酸数 Amino acid number | 等电点 Theoretical pI | 分子量 Molecular weight (Da) | 不稳定指数 Instability index | 脂溶指数 Aliphatic index | 总平均疏水指数 Average of hydropathicity (GRAVY) |
---|---|---|---|---|---|---|---|
VvSAP1 | LOC100266326 | 152 | 9.10 | 17119.98 | 33.30 | 55.52 | -0.600 |
VvSAP2 | LOC100259845 | 172 | 8.77 | 18460.83 | 46.68 | 46.05 | -0.494 |
VvSAP3 | LOC100267237 | 172 | 7.99 | 18502.95 | 27.15 | 56.80 | -0.500 |
VvSAP4 | LOC100242410 | 141 | 8.28 | 15277.21 | 36.57 | 54.75 | -0.509 |
VvSAP5 | LOC100264822 | 161 | 8.92 | 17192.68 | 49.44 | 66.21 | -0.300 |
VvSAP6 | LOC100243583 | 172 | 7.99 | 18153.57 | 30.43 | 68.72 | -0.327 |
VvSAP7 | LOC100852428 | 172 | 8.95 | 18359.69 | 32.98 | 57.50 | -0.486 |
VvSAP8 | LOC100852460 | 172 | 8.22 | 18504.11 | 46.99 | 61.40 | -0.371 |
VvSAP9 | LOC100265156 | 153 | 9.10 | 17153.98 | 38.56 | 50.39 | -0.699 |
VvSAP10 | LOC100265151 | 152 | 8.77 | 16850.54 | 21.92 | 58.36 | -0.558 |
VvSAP11 | LOC100852756 | 109 | 9.23 | 11757.33 | 54.13 | 43.85 | -0.471 |
VvSAP12 | LOC100251836 | 126 | 9.13 | 14293.29 | 54.43 | 53.41 | -0.901 |
VvSAP13 | LOC10085429 | 126 | 9.68 | 14575.89 | 41.04 | 53.41 | -0.904 |
VvSAP14 | LOC100255506 | 293 | 8.56 | 32457.78 | 40.16 | 58.84 | -0.614 |
VvSAP15 | LOC100245574 | 189 | 8.74 | 21133.11 | 49.61 | 47.99 | -0.800 |
表3
葡萄SAP家族亚细胞定位预测"
基因 Gene | 细胞核 Nucleus | 叶绿体 Chloroplast | 细胞外 Extracellular | 细胞骨架 Cytoskeleton | 线粒体 Mitochondria | 过氧化物酶体 Peroxisome | 细胞质和细胞核 Cyto_nucl | 质膜 Plasma membrane |
---|---|---|---|---|---|---|---|---|
VvSAP1 | 6 | 4 | 2 | 1 | 1 | - | - | - |
VvSAP2 | 8 | 1 | 2 | 1 | 2 | - | - | - |
VvSAP3 | 9 | 1 | - | 4 | - | - | - | - |
VvSAP4 | 3 | 10 | - | 1 | - | - | - | - |
VvSAP5 | 4 | 3 | - | 3 | 4 | - | - | - |
VvSAP6 | 5 | 4 | 2 | 3 | - | - | - | - |
VvSAP7 | 4 | 6 | 1 | 1 | 2 | - | - | - |
VvSAP8 | 8 | 2 | 1 | 3 | - | - | - | - |
VvSAP9 | 2.5 | 4 | - | 1.5 | - | 6 | 2.5 | - |
VvSAP10 | 2.5 | 3 | - | 2.5 | - | 6 | 3 | - |
VvSAP11 | 4 | 2 | 2 | 3 | 3 | - | - | - |
VvSAP12 | 5 | 6 | 1 | 1 | 1 | - | - | - |
VvSAP13 | 8 | 2 | 1 | 1 | 1 | - | - | 1 |
VvSAP14 | 14 | - | - | - | - | - | - | - |
VvSAP15 | 13 | - | - | - | - | - | - | 1 |
表4
VvSAP蛋白的二级结构"
蛋白名称 Protein name | α-螺旋 Alpha helix (%) | 拓展链结构 Extended strand (%) | β-转角 Beta turn (%) | 无规则卷曲 Random coil (%) |
---|---|---|---|---|
VvSAP1 | 30.26 | 11.18 | 4.61 | 53.95 |
VvSAP2 | 26.74 | 11.05 | 2.91 | 59.30 |
VvSAP3 | 31.40 | 12.21 | 3.49 | 52.91 |
VvSAP4 | 29.79 | 12.77 | 3.55 | 53.90 |
VvSAP5 | 25.47 | 10.56 | 4.35 | 59.63 |
VvSAP6 | 29.65 | 11.05 | 3.49 | 55.81 |
VvSAP7 | 23.84 | 12.21 | 4.07 | 59.88 |
VvSAP8 | 23.84 | 12.79 | 5.23 | 58.14 |
VvSAP9 | 23.53 | 11.11 | 5.23 | 60.13 |
VvSAP10 | 34.87 | 11.84 | 3.29 | 50.00 |
VvSAP11 | 15.60 | 23.85 | 10.09 | 50.46 |
VvSAP12 | 17.46 | 20.63 | 3.97 | 57.94 |
VvSAP13 | 27.78 | 17.46 | 7.14 | 47.62 |
VvSAP14 | 24.91 | 10.92 | 2.05 | 62.12 |
VvSAP15 | 11.11 | 11.11 | 4.76 | 73.02 |
[1] | 贺普超 . 葡萄学. 北京: 中国农业出版社, 1999: 60-61. |
HE P C. Enology. Beijing: China Agriculture Press, 1999: 60-61. (in Chinese) | |
[2] | 康天兰, 郑平生, 王艳玲, . 甘肃葡萄栽培的历史、现状与未来发展趋势. 中外葡萄与葡萄酒, 2009(5):77-79. |
KANG T L, ZHENG P S, WANG Y L . History, present situation and future progress of viticulture in Gansu.Chinese and Foreign Grapes and Wine, 2009(5):77-79. (in Chinese) | |
[3] | 何红红, 马宗桓, 张元霞, 张娟, 卢世雄, 张志强, 赵鑫, 吴玉霞, 毛娟 . 葡萄LBD基因家族的鉴定与表达分析. 中国农业科学, 2018,51(21):4102-4118. |
HE H H, MA Z H, ZHANG Y X, ZHANG J, LU S X, ZHANG Z Q, ZHAO X, WU Y X, MAO J . Identification and expression analysis of LBD gene family in grape. Scientia Agricultura Sinica, 2018,51(21):4102-4118. (in Chinese) | |
[4] |
丁林云, 张微, 王晋成, 田亮亮, 李妮娜, 郭琪, 杨淑明, 何曼林, 郭旺珍 . 过量表达棉花GhSAP1提高转基因烟草的耐盐性. 中国农业科学, 2014,47(8):1458-1470.
doi: 10.3864/j.issn.0578-1752.2014.08.002 |
DING L Y, ZHANG W, WANG J C, TIAN L L, LI N N, GUO Q, YANG S M, HE M L, GUO W Z . Overexpression of a Gossypium hirsutum stress-associated protein gene( GhSAP1) improves salt stress tolerance in transgenic tobacco. Scientia Agricultura Sinica, 2014,47(8):1458-1470. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.08.002 |
|
[5] | OPIPARI A W, BOGUSKI M S, DIXIT V M . The A20 cDNA induced by tumor necrosis factor α encodes a novel type of zinc finger protein. The Journal of Biological Chemistry, 1990,265(25):14705-14708. |
[6] |
HEYNINCK K, BEYAERT R . A20 inhibits NF-kB activation by dual ubiquitin-editing functions. Trends in Biochemical Sciences, 2005,30(1):1-4.
doi: 10.1016/j.tibs.2004.11.001 |
[7] |
HUANG J, TENG L, LI L X, LIU T, LI L Y, CHEN D Y, XU L G, ZHAI Z H, SHU H B . ZNF216 is an A20-like and IkB kinase γ-interacting inhibitor of NFκB activation. The Journal of Biological Chemistry, 2004,279(16):16847-16853.
doi: 10.1074/jbc.M309491200 |
[8] | DANSANA P K, KOTHARI K S, VIJ S, TYAGI A K . OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Reports, 2014,33(9):1425-1440. |
[9] | DIXIT A, TOMAR P, VAINE E, ABDULLAH H, HAZEN S, DHANKHER O P . A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant, Cell & Environment, 2018,41(5):1171-1185. |
[10] | SOLANKE A U, SHARMA M K, TYAGI A K, SHARMA A K . Characterization and phylogenetic analysis of environmental stress- responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Molecular Genetics and Genomics, 2009,282(2):153-164. |
[11] | 李晓君, 蔡文伟, 张树珍, 许莉萍, 陈萍, 王俊刚 . 甘蔗锌指蛋白基因ShSAP1的克隆与表达模式. 生物工程学报, 2011,27(6):868-875. |
LI X J, CAI W W, ZANG S Z, XU L P, CHEN P, WANG J G . Cloning and expression pattern of a zinc finger protein gene ShSAP1 in Saccharum officinarum. Chinese Journal of Biotechnology, 2011,27(6):868-875. (in Chinese) | |
[12] | SREEDHARAN S, SHEKHAWAT U K, GANAPATHI T R . MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Molecular Biology, 2012,80(4/5):503-517. |
[13] | LIU J Y, YANG X N, YANG X Z, XU M Y, LIU J, XUE M M, MA P D . Isolation and characterization of LcSAP, a Leymus chinensis gene which enhances the salinity tolerance of Saccharomyces cerevisiae. Molecular Biology Reports, 2017,44(1):5-9. |
[14] | SHARMA G, GIRI J, TYAGI A K . Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Science, 2015,237:80-92. |
[15] | KANNEGANTI V, GUPTA A K . Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 2008,66(5):445-462. |
[16] | WANG Y H, ZHANG L R, ZHANG L L, XING T, PENG J Z, SUN S L, CHEN G, WANG X J . A novel stress-associated protein SbSAP14 from Sorghum bicolor confers tolerance to salt stress in transgenic rice. Molecular Breeding, 2013,32(2):437-449. |
[17] | GHNEIM T, SELVARAJ M G, MEYNARD D, FABRE D, PENA A, BEN ROMDHANE W, BEN S R, OGAWA S, REBOLLEDO M C, ISHITANI M, TOHME J, AL-DOSS A, GUIDERDONI E, HASSAIRI A . Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Frontiers in Plant Science, 2017,8:994. |
[18] | ZHANG Z B, ZHANG J W, CHEN Y J, LI R F, WANG H Z, WEI J H . Genome-wide analysis and identification of HAK potassium transporter gene family in maize( Zea mays L.). Molecular Biology Reports, 2012,39(8):8465-8473. |
[19] |
HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K . WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 2007,35:W585-587.
doi: 10.1093/nar/gkm259 |
[20] | YU D D, ZHANG L H, ZHAO K, NIU R X, ZHAI H, ZHANG J X . VaERD15, a transcription factor gene associated with cold-tolerance in Chinese wild Vitis amurensis. Frontiers in Plant Science, 2017,8(e63064):297. |
[21] | 陈代, 李德美, 战吉宬, 黄卫东 . 温度和日照时间对河北怀来霞多丽葡萄成熟度指标的影响. 中国农业科学, 2011,44(3):545-551. |
CHEN D, LI D M, ZHAN J C, HUANG W D . Temperature and duration of sunshine on maturity indices of chardonnay in Huailai county of Hebei province. Scientia Agricultura Sinica, 2011,44(3):545-551. (in Chinese) | |
[22] |
刘辉, 李德军 . 植物应答低温胁迫的转录调控网络研究进展. 中国农业科学, 2014,47(18):3523-3533.
doi: 10.3864/j.issn.0578-1752.2014.18.001 |
LIU H, LI D J . Advances in research of transcriptional regulatory network in response to cold stress in plants. Scientia Agricultura Sinica, 2014,47(18):3523-3533. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.001 |
|
[23] | XU W R, JIAO Y T, LI R M, ZHANG N B, XIAO D M, DING X L, WANG Z P . Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS ONE, 2014,9(7):e102303. |
[24] | YIN X J, HUANG L, ZHANG X M, GUO C L, WANG H, LI Z, WANG X P . Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. Protoplasma, 2017,254(6):2247-2261. |
[25] |
秦玲, 康文怀, 齐艳玲, 蔡爱军 . 盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响. 中国农业科学, 2012,45(20):4233-4241.
doi: 10.3864/j.issn.0578-1752.2012.20.013 |
QIN L, KANG W H, QI Y L, CAI A J . Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (Vitis spp.). Scientia Agricultura Sinica, 2012,45(20):4233-4241. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.20.013 |
|
[26] | LINNEN J M, BAILEY C P, WEEKS D L . Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene, 1993,128(2):181-188. |
[27] | DUAN W, SUN B G, LI T W, TAN B J, LEE M K, TEO T S . Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo. Gene, 2000,256(1/2):113-121. |
[28] |
EVANS P C, OVAA H, HAMON M, KILSHAW P E, HAMM S, BAUER S, PLOEGH H L, SMITH T S . Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochemical Journal, 2004,378(Pt 3):727-734.
doi: 10.1042/bj20031377 |
[29] |
CHEN Z J . Ubiquitin signaling in the NF-κB pathway. Nature Cell Biology, 2005,7(8):758-765.
doi: 10.1038/ncb0805-758 |
[30] |
HISHIYA A, IEMURA S, NATSUME T, TAKAYAMA S, IKEDA K, WATANABE K . A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. The EMBO Journal, 2006,25(3):554-564.
doi: 10.1038/sj.emboj.7600945 |
[31] | VIJ S, TYAGI A K . Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Molecular Genetics and Genomics, 2006,276(6):565-575. |
[32] | JIA H X, LI J B, ZHANG J, REN Y Q, HU J J, LU M Z . Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genetics & Genomes, 2016,12(4):78. |
[33] | CANNON S B, MITRA A, BAUMGARTEN A, YOUNG N D, MAY G . The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004,4(1):10. |
[34] | WANG G, LOVATO A, POLVERARI A, WANG M, LIANG Y H, MA Y C, CHENG Z M . Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biology, 2014,14(1):219. |
[35] |
HU W, HOU X W, HUANG C, YAN Y, TIE W W, DING Z H, WEI Y X, LIU J H, MIAO H X, LU Z W, LI M Y, XU B Y, JIN Z Q . Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana . International Journal of Molecular Sciences, 2015,16(8):19728-19751.
doi: 10.3390/ijms160819728 |
[36] |
GIRI J, DANSANA P K, KOTHARI K S, SHARMA G, VIJ S, TYAGI A K . SAPs as novel regulators of abiotic stress response in plants. BioEssays, 2013,35(7):639-648.
doi: 10.1002/bies.201200181 |
[37] |
JEFFARES D C, PENKETT C J, BÄHLER J . Rapidly regulated genes are intron poor. Trends in Genetics, 2008,24(8):375-378.
doi: 10.1016/j.tig.2008.05.006 |
[38] | KAMAKSHI S K, PRASANT K D, JITENDER G, AKHILESH K T . Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Frontiers in Plant Science, 2016,7(18):1057. |
[39] | STROHER E, WANG X J, ROLOFF N, KLEIN P, HUSEMANN A, DIETZ K J . Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Molecular Plant, 2009,2(2):357-367. |
[1] | 徐倩, 王晗, 马赛, 胡秋辉, 马宁, 苏安祥, 李辰, 马高兴. 杏鲍菇多糖及其消化产物对淀粉消化酶的抑制及相互作用[J]. 中国农业科学, 2023, 56(2): 357-367. |
[2] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[3] | 李旭飞,杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和. 葡萄VlCKX4表达特性分析与转录调控预测[J]. 中国农业科学, 2023, 56(1): 144-155. |
[4] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[5] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[6] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[7] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[8] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[9] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[10] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[11] | 唐子云,胡健欣,陈进,陆毅兴,孔伶俐,刁露,张发福,熊文广,曾振灵. 动物源金黄色葡萄球菌生物被膜形成能力与分子分型关系研究[J]. 中国农业科学, 2022, 55(3): 602-612. |
[12] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[13] | 王博,覃富强,邓凤莹,罗惠格,陈祥飞,成果,白扬,黄小云,韩佳宇,曹雄军,白先进. ‘阳光玫瑰’葡萄一年两收果实类黄酮组分及含量差异分析[J]. 中国农业科学, 2022, 55(22): 4473-4486. |
[14] | 董泽宽,张水勤,李燕婷,高强,赵秉强,袁亮. 添加螯合剂对磷酸二铵溶解、固定及转化的影响[J]. 中国农业科学, 2022, 55(21): 4225-4236. |
[15] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 566
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 527
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|