中国农业科学 ›› 2019, Vol. 52 ›› Issue (1): 11-20.doi: 10.3864/j.issn.0578-1752.2019.01.002
梁慧珍1(),余永亮1,许兰杰1,杨红旗1,董薇1,谭政伟1,李磊1,裴新涌2,刘新梅1
收稿日期:
2018-06-25
接受日期:
2018-08-07
出版日期:
2019-01-01
发布日期:
2019-01-12
基金资助:
LIANG HuiZhen1(),YU YongLiang1,XU LanJie1,YANG HongQi1,DONG Wei1,TAN ZhengWei1,LI Lei1,PEI XinYong2,LIU XinMei1
Received:
2018-06-25
Accepted:
2018-08-07
Online:
2019-01-01
Published:
2019-01-12
摘要:
【目的】 通过对大豆α-生育酚进行遗传和QTL分析,研究其遗传机制,定位其主效QTL,为高α-生育酚含量的大豆品种选育奠定遗传学基础。【方法】 以栽培大豆晋豆23为母本、山西农家品种大豆灰布支黑豆(ZDD02315)为父本杂交衍生的447个RIL作为供试群体构建遗传图谱,试验群体及亲本分别于2011年、2012年和2015年夏季在河南省农业科学院原阳试验基地种植,冬季在海南省三亚南繁基地种植。田间试验采取随机区组设计,2次重复。从6个环境中每个家系选取15.00 g籽粒饱满,大小一致的大豆种子,利用高效液相色谱法定性、定量测定样品中的α-生育酚含量。采用主基因+多基因混合遗传分离分析法和WinQTLCart 2.5复合区间作图法,对大豆α-生育酚含量进行主基因+多基因混合遗传分析和QTL定位。【结果】 基于主基因+多基因混合遗传分离分析法,α-生育酚受4对主基因控制,遗传基因分布在双亲中。4对主基因间加性效应值中3对为正值,表明这些基因来源于母本晋豆23;1对为负值,表明该对基因来源于父本灰布支黑豆;4对主基因之间相互作用的上位性效应表现为正值和负值的各有3对,说明不同基因间上位性效应对α-TOC的影响方向并不完全一致。环境因素引起的变异为0.13%—4.05%。表明α-TOC主要受4对主基因影响,受环境因素影响较小。采用WinQTLCart 2.5复合区间作图(CIM)共检测到17个影响α-生育酚的QTL,分布于第1、2、5、6、8、14、16、17共8条染色体中,单个QTL的贡献率8.35%—35.78%,QTL主要表现为加性效应。qα-D1a-1同时在2011年原阳、2012年原阳和三亚、2015年原阳4个环境下检测到,且均定位在第1染色体Satt320—Satt254标记区间19.79 cM处,解释的表型变异分别为12.55%、12.01%和11.89%、12.61%,加性效应值0.119-0.132,增加α-TOC含量的等位基因来自母本晋豆23;qα-A2-1同时在2011年原阳和三亚、2015年原阳3个环境下检测到,且均定位在第8染色体Sat_129—Satt377标记区间44.53 cM处,解释的表型变异分别为23.18%和22.56%、23.01%,加性效应值-0.195—-0.180,增加α-TOC含量的等位基因来自父本灰布支黑豆。qα-D1a-1和qα-A2-1 2个QTL能够稳定遗传。【结果】 α-生育酚最适遗传模型符合4MG-AI,即4对具有加性上位性效应的主基因遗传模型。其遗传主要受4对主基因影响,受环境因素影响较小。检测到α-生育酚的2个稳定主效QTL,Satt320—Satt254和Sat_129—Satt377是共位标记区间。
梁慧珍,余永亮,许兰杰,杨红旗,董薇,谭政伟,李磊,裴新涌,刘新梅. 大豆α-生育酚的遗传与QTL分析[J]. 中国农业科学, 2019, 52(1): 11-20.
LIANG HuiZhen,YU YongLiang,XU LanJie,YANG HongQi,DONG Wei,TAN ZhengWei,LI Lei,PEI XinYong,LIU XinMei. Inheritance and QTL Mapping for α-Tocopherol in Soybean[J]. Scientia Agricultura Sinica, 2019, 52(1): 11-20.
表1
RIL群体大豆α-生育酚含量表型变异"
年份 Year | 平均值Mean | 亲本差P2—P1 | t值t value | RIL变幅RIL range | GCV(%) | 遗传率h2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原阳 Yuanyang | 三亚 Sanya | 原阳 Yuanyang | 三亚 Sanya | 原阳 Yuanyang | 三亚 Sanya | 原阳 Yuanyang | 三亚 Sanya | 原阳 Yuanyang | 三亚 Sanya | 原阳 Yuanyang | 三亚 Sanya | |
2011 | 1.68 | 1.73 | -0.68 | -0.72 | 5.22** | 5.93** | 1.17—2.67 | 1.07—2.44 | 22.65 | 18.30 | 62.02 | 68.37 |
2012 | 1.71 | 1.68 | -0.70 | -0.64 | 6.17** | 4.97** | 1.02—3.47 | 1.27—2.47 | 24.44 | 18.25 | 67.21 | 77.35 |
2015 | 1.74 | 1.85 | -0.71 | -0.79 | 5.32** | 7.05** | 1.07—3.20 | 1.03—2.68 | 25.29 | 19.76 | 70.03 | 75.91 |
平均值Mean | 1.71 | 1.75 | -0.70 | -0.72 | 6.29** | 7.83** | 1.02—3.47 | 1.03—2.68 | 23.98 | 18.72 | 68.52 | 73.53 |
表2
大豆种子α-生育酚含量方差分析"
变异Variation | Df | SS | MS | F | F0.05 |
---|---|---|---|---|---|
年份间Year | 2 | 0.0551 | 0.0551 | <1 | |
地点间Location | 1 | 0.0070 | 0.0035 | <1 | |
基因型Genotypes | 117 | 31.1280 | 0.2661 | 2.0034* | 1.871 |
年份×地点Year×Location | 2 | 0.1497 | 0.0749 | <1 | |
年份×基因Year×Genotypes | 234 | 55.4814 | 0.2371 | 1.7854 | 1.830 |
地点×基因Location×Genotypes | 117 | 16.5170 | 0.1412 | 1.0633 | 1.871 |
年份×地点×基因Year×Location×Genotypes | 234 | 22.9903 | 0.0982 | <1 | |
误差 Error | 702 | 93.2256 | 0.1328 |
表3
α-生育酚最适模型及遗传参数估计结果"
参数 Parameter | α-生育酚α-TOC | 参数 Parameter | α-生育酚α-TOC | |||||
---|---|---|---|---|---|---|---|---|
原阳Yuanyang | 三亚Sanya | 原阳Yuanyang | 三亚Sanya | |||||
最适模型Optimal model | 4MG-AI | 4MG-AI | ||||||
一阶参数1st order parameter | 二阶参数2nd order parameter | |||||||
M | 2011 | 0.8822 | 0.8724 | σp2 | 2011 | 0.7701 | 0.8051 | |
2012 | 0.9814 | 1.6881 | 2012 | 0.8221 | 0.0937 | |||
2015 | 0.9917 | 0.8798 | 2015 | 0.8468 | 0.7472 | |||
d(da) | 2011 | 0.8542 | 0.8727 | σmg2 | 2011 | 0.7684 | 0.8041 | |
2012 | 0.8786 | 0.1906 | 2012 | 0.8178 | 0.0899 | |||
2015 | 0.9900 | 0.8796 | 2015 | 0.8447 | 0.7455 | |||
db | 2011 | 0.1392 | 0.1832 | σpg2 | 2011 | |||
2012 | 0.1792 | 0.0674 | 2012 | |||||
2015 | 0.2319 | 0.1563 | 2015 | |||||
dc | 2011 | 0.0728 | 0.0852 | h2mg(%) | 2011 | 99.78 | 99.87 | |
2012 | 0.1864 | 0.0054 | 2012 | 99.48 | 95.95 | |||
2015 | 0.1722 | 0.1180 | 2015 | 99.75 | 99.77 | |||
dd | 2011 | -0.0975 | -0.0446 | hpg2 (%) | 2011 | |||
2012 | -0.0835 | -0.0364 | 2012 | |||||
2015 | -0.1217 | -0.0772 | 2015 | |||||
iab(i*) | 2011 | 0.1392 | 0.1832 | |||||
2012 | 0.1792 | 0.1679 | ||||||
2015 | 0.2319 | 0.1563 | ||||||
iac | 2011 | 0.0728 | 0.0852 | |||||
2012 | 0.1864 | 0.0794 | ||||||
2015 | 0.1722 | 0.1180 | ||||||
iad | 2011 | -0.0975 | -0.0446 | |||||
2012 | -0.0835 | -0.0967 | ||||||
2015 | -0.1217 | -0.0772 | ||||||
ibc | 2011 | 0.0279 | 0.007 | |||||
2012 | 0.1083 | 0.0286 | ||||||
2015 | 0.0125 | 0.0085 | ||||||
ibd | 2011 | -0.0658 | -0.0059 | |||||
2012 | -0.1309 | -0.0938 | ||||||
2015 | -0.0083 | -0.007 | ||||||
icd | 2011 | -0.0276 | -0.0052 | |||||
2012 | -0.1028 | -0.0077 | ||||||
2015 | -0.0125 | -0.0034 |
表4
α-生育酚QTL位置及其参数"
年份 Year | 环境 Environment | QTL | 染色体 Chr. | 标记区间 Marker Interval | 位置 Position (cM) | LOD | 加性效应 Additive | R2 (%) |
---|---|---|---|---|---|---|---|---|
2011 | 原阳Yuanyang | qα-A2-1 | A2(8) | Sat_129—Satt377 | 44.53 | 3.75 | -0.195 | 23.18 |
qα-D2-1 | D2(17) | Satt372—Satt154 | 0.01 | 2.62 | 0.147 | 12.82 | ||
qα-A2-2 | A2(7) | Satt333—Satt327 | 93.50 | 3.93 | 0.182 | 21.07 | ||
qα-D1a-1 | D1a(1) | Satt320—Satt254 | 19.79 | 2.63 | 0.125 | 12.55 | ||
三亚Sanya | qα-D1a-3 | D1a(1) | Satt267—Satt402 | 28.98 | 4.11 | 0.140 | 17.05 | |
qα-A2-1 | A2(8) | Sat_129—Satt377 | 44.53 | 3.71 | -0.190 | 22.56 | ||
2012 | 原阳Yuanyang | qα-D1b-1 | D1b(2) | Satt041—Satt546 | 14.84 | 2.52 | -0.736 | 8.35 |
qα-C2-2 | C2(6) | Satt100—Satt134 | 100.60 | 3.05 | -0.143 | 21.10 | ||
qα-D1a-1 | D1a(1) | Satt320—Satt254 | 19.79 | 2.70 | 0.131 | 12.01 | ||
三亚Sanya | qα-A1-1 | A1(5) | Satt545—Satt511 | 114.35 | 5.06 | -0.191 | 35.78 | |
qα-C2-1 | C2(6) | Satt577—Satt100 | 98.36 | 4.10 | -0.129 | 17.07 | ||
qα-D1a-1 | D1a(1) | Satt320—Satt254 | 19.79 | 2.53 | 0.119 | 11.89 | ||
qα-D1a-2 | D1a(1) | Satt179—Satt267 | 24.23 | 2.88 | 0.120 | 12.33 | ||
2015 | 原阳Yuanyang | qα-D1a-1 | D1a(1) | Satt320—Satt254 | 19.79 | 2.72 | 0.132 | 12.61 |
qα-A2-1 | A2(8) | Sat_129—Satt377 | 44.53 | 3.21 | -0.180 | 23.01 | ||
三亚Sanya | qα-B2-1 | B2(14) | Satt070—Satt534 | 86.20 | 3.18 | -0.964 | 20.46 | |
qα-J_2-1 | J_2(16) | Satt380—Satt183 | 0.01 | 2.71 | -0.687 | 16.90 |
[1] |
RIMBACH G, MOEHRING J, HUEBBE P . Gene-regulatory activity of alpha-tocopherol. Molecules, 2010,15:1746-1761.
doi: 10.3390/molecules15031746 |
[2] |
ABBASI A R, HAJIREZAEI M, HOFIUS D, SONNEWALD U, VOLL L M . Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiology, 2007,143:1720-1738.
doi: 10.1104/pp.106.094771 pmid: 17293434 |
[3] |
HINCHA D K . Effects of α-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Letters, 2008,582:3687-3692.
doi: 10.1016/j.febslet.2008.10.002 pmid: 18848546 |
[4] |
KANWISCHER M, PORFIROVA S, BERGMULLER E , DÖRMANN P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiology, 2005,137:713-723.
doi: 10.1104/pp.104.054908 pmid: 15665245 |
[5] | TAVVA V S, KIM Y H, KAGAN I A, DINKINS R D, KIM K H, COLLINS G B . Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Reports, 2007,26(1):1-70. |
[6] | 李海燕, 隋美楠, 聂腾坤, 史帅, 韩英鹏, 李文滨 . 大豆维生素E五个相关基因表达模式分析. 东北农业大学学报, 2016,47(5):15-22. |
LI H Y, SUI M N, NIE T K, SHI S, HAN Y P, LI W B . Expression analysis of five relative genes of soybean vitamin E. Journal of Northeast Agricultural University, 2016,47(5):15-22. (in Chinese) | |
[7] |
FENG F, DENG F, ZHOU P, YAN J, WANG Q, YANG R, LI X . QTL mapping for the tocopherols at milk stage of kernel development in sweet corn. Euphytica, 2013,193(3):409-417.
doi: 10.1007/s10681-013-0948-5 |
[8] |
XU S, ZHANG D, CAI Y, ZHOU Y, TRUSHAR S, FARHAN A, LI Q, LI Z, WANG W, LI J, YANG X, YAN J . Dissecting tocopherols content in maize ( Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biology, 2012,12(1):201.
doi: 10.1186/1471-2229-12-201 pmid: 23122295 |
[9] |
WANG X, ZHANG C, LI L, FRITSCHE S, ENDRIGKEIT J, ZHANG W, LONG Y, JUNG C, MENG J . Unraveling the genetic basis of seed tocopherol content and composition in rapeseed ( Brassica napus L.). PLoS ONE, 2012,7(11):e50038.
doi: 10.1371/journal.pone.0050038 pmid: 23185526 |
[10] |
GRAEBNER R C, WISE M, CUESTA-MARCOS A, GENIZA M, BLAKE T, BLAKE V C, BUTLER J, CHAO S, HOLE D J, HORSLEY R, JAISWAL P, OBERT D, SMITH K, ULLRICHL S, HAYESL P M . Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley. PLoS ONE, 2015,10(7):e0133767.
doi: 10.1371/journal.pone.0133767 pmid: 4514886 |
[11] |
HADDADI P, EBRAHIMI A, LANGLADE N B, YAZDI-SAMADI B, BERGER M, CALMON A, NAGHAVI M R, VINCOURT P, SARRAFI A . Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Molecular Breeding, 2012,29(3):717-729.
doi: 10.1007/s11032-011-9585-7 |
[12] |
MORAL L D , FERNANDEZ-MARTINEZ J M, VELASCO L, PEREZVICH. Quantitative trait loci for seed tocopherol content in sunflower. Crop Science, 2012,52(2):786-794.
doi: 10.2135/cropsci2011.08.0406 |
[13] |
GUPTA S, SANGHA M K, KAUR G, BANGA S, GUPTA M, KUMAR H, BANGA S S . QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard ( Brassica juncea L.). Euphytica, 2015,201(3):345-356.
doi: 10.1007/s10681-014-1204-3 |
[14] |
DWIYANTI M S, UJIIE A , THUY L T B, YAMDA T, KITAMURA K. Genetic analysis of high α-tocopherol content in soybean seeds. Breed Science, 2007,57:23-28.
doi: 10.1270/jsbbs.57.23 |
[15] |
SHAW E, RAJCAN I . Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’בOAC Shire’. Plant Breeding, 2017,136:83-93.
doi: 10.1111/pbr.2017.136.issue-1 |
[16] |
LI H, WANG Y, HAN Y, TENG W, ZHAO X, LI Y, LI W . Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL×environment effects. Plant Breeding, 2016,135(2):208-214.
doi: 10.1111/pbr.2016.135.issue-2 |
[17] |
LI H, LIU H, HAN Y, WU X, TENG W, LIU G, LI W . Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theoretical and Applied Genetics, 2010,120(7):1405-1413.
doi: 10.1007/s00122-010-1264-2 pmid: 20069414 |
[18] |
张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国 . 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015,41(2):187-196.
doi: 10.3724/SP.J.1006.2015.00187 |
ZHANG H M, LI H C, WEN Z X, GU H P, YUAN X X, CHEN H T, CUI X Y, CHEN X, LU W G . Identification of QTL associated with vitamin E content in soybean seeds. Acta Agronomica Sinica, 2015,41(2):187-196.
doi: 10.3724/SP.J.1006.2015.00187 |
|
[19] | WANG S C, BASTEN C J, ZENG Z B . Windows QTL cartographer 2.5 user manual. Department of Statistics, North Carolina State University, Raleigh, NC, 2005. |
[20] |
曹锡文, 刘兵, 章元明 . 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
doi: 10.7685/j.issn.1000-2030.2013.06.001 |
CAO X W, LIU B, ZHANG Y M . SEA: A software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013,36(6):1-6. (in Chinese)
doi: 10.7685/j.issn.1000-2030.2013.06.001 |
|
[21] |
SONG Q J, MAREK L F, SHOEMAKER R C, LARK K G, CONCIBIDO V C, DELANNAY X, SPECHT J E, CREGAN P B . A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 2004,109:122-128.
doi: 10.1007/s00122-004-1602-3 pmid: 14991109 |
[22] | 梁慧珍 . 大豆子粒性状的遗传及QTL分析[D]. 杨凌: 西北农林科技大学, 2006. |
LIANG H Z . Genetic analysis and QTL mapping of seed traits in soybean(Glycine max (L.) Merr)[D]. Yangling: Northwest A&F University, 2006. ( in Chinese) | |
[23] | 王珍 . 大豆SSR遗传图谱构建及重要农艺性状QTL分析[D]. 南宁: 广西大学, 2004. |
WANG Z . Construction of soybean SSR based map and QTL analysis important agronomic traits[D]. Nanning: Guangxi University, 2004. ( in Chinese) | |
[24] | MCCOUCH S R, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T . Report on QTL nome nclature. Rice Genetics Newsletter, 1997,14:11-14. |
[25] |
王金社, 李海旺, 赵团结, 盖钧镒 . 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010,36(2):191-201.
doi: 10.3724/SP.J.1006.2010.00191 |
WANG J S, LI H W, ZHAO T J, GAI J Y . Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agronomica Sinica, 2010,36(2):191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00191 |
|
[26] |
JANSEN R C , VAN OOIJIEN J M, STAM P, LISTER C, DEAN C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theoretical and Applied Genetics, 1995,91:33-37.
doi: 10.1007/BF00220855 pmid: 24169664 |
[27] |
HAGIWARA W E, ONISH K, TAKAMURE I, SANO Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35.
doi: 10.1007/s10681-006-9085-8 |
[28] |
WANG Y, CHENG L, LENG J, WU, C, SHAO G, HOU W, HAN T . Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean ( Glycine max(L.) Merr.). Euphytica, 2015,201(2):275-284.
doi: 10.1007/s10681-014-1209-y |
[29] | LIANG H, YU Y, WANG S, LIAN Y, WANG T, WEI Y, GONG P, LIU X, FANG X, ZHANG M . QTL mapping of isoflavone, oil and protein contents in soybean ( Glycine max L. Merr.) [D]. Agricultural Science in China, 2010,9(8):1108-1116. |
[30] |
梁慧珍, 余永亮, 杨红旗, 许兰杰, 董薇, 牛永光, 张海洋, 刘学义, 方宣钧 . 大豆异黄酮及其组分含量的遗传分析与QTL检测. 作物学报, 2015,41(9):1372-1383.
doi: 10.3724/SP.J.1006.2015.01372 |
LIANG H Z, YU Y L, YANG H Q, XU L J, DONG W, NIU Y G, ZHANG H Y, LIU X Y, FANG X J . Genetic analysis and QTL mapping of isoflavone contents and its components in soybean. Acta Agronomica Sinica, 2015,41(9):1372-1383. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01372 |
|
[31] |
RIZAL G, KARKI S, WANG Y, CHENG L, LENG J, WU C, SHAO G, HOU W, HAN T . Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean ( Glycine max (L.) Merr.). Euphytica, 2015,201(2):275-284.
doi: 10.1007/s10681-014-1209-y |
[32] | RIZAL G, KARKI S . Alcohol dehydrogenase (ADH) activity in soybean (Glycine max(L.) Merr.) under flooding stress. Electronic Journal of Plant Breeding, 2011,2(1):50-57. |
[33] |
梁慧珍, 董薇, 许兰杰, 余永亮, 杨红旗, 谭政伟, 许阳, 陈鑫伟 . 不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析. 中国农业科学, 2017,50(18):3450-3460.
doi: 10.3864/j.issn.0578-1752.2017.18.002 |
LIANG H Z, DONG W, XU L J, YU Y L, YANG H Q, TAN Z W, XU Y, CHEN X W . QTL mapping for main moot length and lateral root number in soybean at the seedling stage in different N, P and K environments. Scientia Agricultura Sinica, 2017,50(18):3450-3460.
doi: 10.3864/j.issn.0578-1752.2017.18.002 |
|
[34] |
DU W, YU D, FU S . Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max(L.) Merr.]. Agricultural Science in China, 2009,8(5):529-537.
doi: 10.1016/S1671-2927(08)60243-6 |
[35] |
梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 崔暐文, 巩鹏涛, 方宣钧 . 幼苗期大豆根系性状的遗传分析与QTL检测. 中国农业科学, 2014,47(9):1681-1691.
doi: 10.3864/j.issn.0578-1752.2014.09.003 |
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, CUI W W, GONG P T, FANG X J . Genetic and QTL analysis of root traits at seedling stage in soybean [ Glycine max( L.) Merr.]. Scientia Agricultura Sinica, 2014,47(9):1681-1691. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.09.003 |
|
[36] | 李海燕 . 大豆维生素E含量的遗传分析及QTL定位[D]. 哈尔滨: 东北林业大学, 2010. |
LI H Y . Genetic and QTL analysis of the content of vitamin E in soybean[D]. Harbin: Northeast Forestry University, 2010. ( in Chinese) | |
[37] | 方宣钧, 吴为人, 唐纪良 . 作物DNA标记辅助育种. 北京: 科学技术出版社, 2001. |
FANG X J, WU W R, TANG J L. Molecular Marker Assistant Breeding in Crop. Beijing: Science Press, 2001. ( in Chinese) | |
[38] |
SONG K, SLOCUM M K, OSBORN T C . Molecular marker analysis of genes controlling morphological variation in Brassica rapa(syn. campestris). Theoretical and Applied Genetics, 1995,90:1-10.
doi: 10.1007/BF00220989 pmid: 24173777 |
[39] |
LI Z , PINSON S R M, STANSEL J W. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice ( Oryza sativa L.). Theoretical and Applied Genetics, 1995,91:374-381.
doi: 10.1007/BF00220902 pmid: 24169788 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, |
[2] | 刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356. |
[3] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[4] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[7] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[8] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[9] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[10] | 宋松泉,刘军,唐翠芳,程红焱,王伟青,张琪,张文虎,高家东. 种子耐脱水性的生理及分子机制研究进展[J]. 中国农业科学, 2022, 55(6): 1047-1063. |
[11] | 王凯,张海亮,董祎鑫,陈少侃,郭刚,刘林,王雅春. 基于牧场管理数据的奶牛健康性状定义及遗传参数估计[J]. 中国农业科学, 2022, 55(6): 1227-1240. |
[12] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[13] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[14] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[15] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 559
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|