[1]St. Laurent A, Merwin I A, Thies J E. Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant and Soil, 2008, 304(1): 209-225.
[2]Manici L M, Ciavatta C, Kelderer M, Erschbaumer G. Replant problems in South Tyrol: Role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil, 2003, 256: 315-324.
[3]Van Schoor L, Denman S, Cook N C. Characterisation of apple replant disease under South African conditions and potential biological management strategies. Scientia Horticulturae, 2009, 119(2): 153-162.
[4]Tewoldemedhin Y T, Mazzola M, Botha W J, Spies C F J, McLeod A. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. European Journal of Plant Pathology, 2011b, 130(2): 215-229.
[5]Wilson S, Andrews P, Nair T S. Non- fumigant management of apple replant disease. Scientia Horticulturae, 2004, 102(2): 221-231.
[6]喻景权, 杜尧舜. 蔬菜设施栽培可持续发展中的连作障碍问题. 沈阳农业大学学报, 2000, 31(1): 124-126.
Yu J Q, Du Y S. Soil-sickness problem in the sustainable development for the protected production of vegetables. Journal of Shenyang Agricultural Uinversity, 2000, 31(1): 124-126. (in Chinese)
[7]吕卫光, 张春兰, 袁飞, 彭宇. 有机肥减轻连作对黄瓜自毒作用的机制. 上海农业学报, 2002, 18(2): 52-56.
Lü W G, Zhang C L, Yuan F, Peng Y. Mechanism of organic manure relieving the autotoxicity to continuous cropping cucumber. Acta Agriculturae Shanghai, 2002, 18(2): 52-56. (in Chinese)
[8]毛志泉, 张继祥, 胡艳丽, 张江红, 王丽琴, 束怀瑞. 有机物料对平邑甜茶根系 32P 吸收动力学参数的影响. 中国农业科学, 2005, 38(11): 2365-2371.
Mao Z Q, Zhang J X, Hu Y L, Zhang J H, Wang L Q, Shu H R. The effects of organic materials on absorption dynamic parameter of 32P of M. hupehensis Rehd. Root system. Scientia Agricultura Sinica, 2005, 38(11): 2365-2371. (in Chinese)
[9]尹芳, 张无敌, 刘士清, 陈丽琼, 官会林, 夏朝凤. 沼液抑制三七镰刀菌的影响因素研究. 中国沼气, 2006, 24(2): 51-52, 62.
Yin F, Zhang W D, Liu S Q, Chen L Q, Guan H L, Xia C F. Study on affecting factors of biogas slurry on bacteriostastic activity of Fusarium solani. China Biogas, 2006, 24(2): 51-52, 62. (in Chinese)
[10]Loria E R, Sawyer J E, Barker D W, Lundvall J P, Lorimor J C. Use of anaerobically digested swine manure as a nitrogen source in corn production. Agronomy Journal, 2007, 99: 1119-1129.
[11]Terhoeven-Urselmans T, Scheller E, Raubuch M, Ludwig B, Joergensen R G. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Applied Soil Ecology, 2009, 42: 297-302.
[12]Mai W F, Abawi G S. Controlling replant disease of pome and stone fruits in northeastern United States by preplant fumigation. Plant Disease, 1981, 65: 859-864.
[13]Yao S R, Merwin I A, Abawi G A, Thies J E. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biology and Biochemistry, 2006, 38: 578-599.
[14]Chang C Y, Chao C C, Chao W L. Community structure and functional diversity of indigenous fluorescent Pseudomonas of long-term swine compost applied maize rhizosphere. Soil Biology and Biochemistry, 2008, 40: 495-504.
[15]Crecchio C, Stotzky G. Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biology and Biochemistry, 2001, 33: 573-581.
[16]Bernard E, Larkin R P, Tavantzis S, Erich M S, Alyokhin A, Sewell G, Lannan A, Gross S D. Compost rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Applied Soil Ecology, 2012, 52: 29-41.
[17]Mazzola M, Mullinix K. Comparative field efficacy of management strategies containing Brassica napus seed meal or green manure for the control of apple replant disease. Plant Disease, 2005, 89(11): 1207-1213.
[18]张江红. 酚类物质对苹果的化感作用及重茬障碍影响机理的研究[D]. 山东泰安: 山东农业大学, 2005.
Zhang J H. Allelopathic effect of phenolics and its role on apple replant disease mechanism[D]. Taian, Shandong: Shandong Agricultural University, 2005. (in Chinese)
[19]Zhang Z B, Chen Q, Yin C M, Shen X, Chen X S, Sun H B, Gao A N, Mao Z Q. The effects of organic matter on the physiological features of Malus hupehensis seedlings and soil properties under replant conditions. Scientia Horticulturae, 2012, 146: 52-58.
[20]Zhang Y K, Han X J, Chen X L, Jin H, Cui X M. Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress. Scientia Horticulturae, 2009, 123: 217-223.
[21]Omran R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology, 1980, 65(2): 407-408.
[22]Singh B K, Sharma S R, Singh B. Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase, peroxidase and catalase. Scientia Horticulturae, 2010, 124: 9-13.
[23]赵世杰, 史国安, 董新纯. 植物生理学试验指导. 北京:中国农业科学技术出版社, 2002: 55-57.
Zhao S J, Shi G A, Dong X C. Techniques of Plant Physiological Experimental. Beijing: Chinese Agricultural Science and Technology Press, 2002: 55-57. (in Chinese)
[24]姚广, 高辉远, 王未未, 张立涛, 部建雯. 铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响. 生态学报, 2009, 29(3): 1162-1169.
Yao G, Gao H Y, Wang W W, Zhang L T, Bu J W. The effects of Pb-stress on functions of photosystems and photosynthetic rate in maize seedling leaves. Acta Ecologica Sinica, 2009, 29(3): 1162-1169. (in Chinese)
[25]孙永江, 付艳东, 杜远鹏, 翟衡. 不同温度/光照组合对‘赤霞珠’葡萄叶片光系统 II 功能的影响. 中国农业科学, 2013, 46(6): 1191-1200.
Sun Y J, Fu Y D, Du Y P, Zhai H. Effects of different temperature and light treatments on photosynthetic system II in Vitis vinifera L. cv. Cabernet Sauvignon. Scientia Agricultura Sinica, 2013, 46(6): 1191-1200. (in Chinese)
[26]Demmig-Adams B, Adams III W W. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 1996, 198(3): 460-470.
[27]Bai R, Ma F W, Liang D, Zhao X. Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. Journal of Chemical Ecology, 2009, 35: 488-494.
[28]杨树泉, 沈向, 毛志泉, 尹承苗, 王峰, 王青青. 环渤海湾苹果产区老果园与连作园土壤线虫群落特征. 生态学报, 2010, 30(16): 4445-4451.
Yang S Q, Shen X, Mao Z Q, Yin C M, Wang F, Wang Q Q. Characterization of nematode communities in the soil of long-standing versus replanted apple orchards surrounding Bohai Gulf. Acta Ecologica Sinica, 2010, 30(16): 4445-4451. (in Chinese)
[29]Tewoldemedhin T Y, Mazzola M, Mostert L, McLeod A. Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 2011, 129: 637-651.
[30]孙海兵, 毛志泉, 朱树华. 环渤海湾地区连作苹果园土壤中酚酸类物质变化. 生态学报,2011, 31(1): 90-97.
Sun H B, Mao Z Q, Zhu S H. Changes of phenolic acids in the soil of replanted apple orchards surrounding Bohai Gulf. Acta Ecologica Sinica, 2011, 31(1): 90-97. (in Chinese)
[31]Qin W, Egolfopoulos F N. Fundamental and environmental aspects of land fill gas utilization for power generation. Chemical Engineering Journal, 2001, 82(2): 157-172.
[32]Khalil M E A, Badran N M, El-Emam M A A. Effect of different organic manures on growth and nutritional status of corn. Egyptian Journal of Soil Science, 2000, 40: 245-263.
[33]尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展. 中国农学通报, 2007, 23(1): 105-110.
Yin Y Q, Hu J B, Deng M J. Latest development of antioxidant system and responses to stress in plant leaves. Chinese Agricultural Science Bulletin, 2007, 23(1): 105-110. (in Chinese)
[34]Ahmad P, Jaleel C A, Salem M A, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 2010, 30(3): 161-175.
[35]Wu H S, Yang X N, Fan J Q, Miao W G, Ling N, Xu Y C, Huang Q W, Shen Q R. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl, 2008, 54(2): 287-300.
[36]Vallad G E, Cooperband L, Goodman R M. Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiological and Molecular Plant Pathology, 2003, 63: 65-77.
[37]孙晓方, 何家庆, 黄训端, 平江, 葛结林. 不同光强对加拿大一枝黄花生长和叶绿素荧光的影响. 西北植物学报, 2008, 28(4): 752-758.
Sun X F, He J Q, Huang X D, Ping J, Ge J L. Growth characters and chlorophyll fluorescence of goldenrod (Solidago canadensis) in different light intensities. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(4): 752-758. (in Chinese)
[38]肖丽, 高瑞凤, 隋方功. 氯胁迫对大白菜幼苗叶绿素含量及光合作用的影响. 中国土壤与肥料, 2008(2): 44-47.
Xiao L, Gao R F, Sui F G. Effects of chloride stress on the photosynthesis and chlorophyll content of Chinese cabbage seedlings. Soil and Fertilizer Sciences in China, 2008(2) : 44-47. (in Chinese)
[39]Wang H L, Lin K D, Hou Z A, Richardson B, Gan J. Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments, 2010, 10(2): 283-289.
[40]Wright H, Delong J, Lada R, Prange R. The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp. ). Postharvest Biology and Technology, 2009, 51: 193-199. |