[1]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Molecular Biology, 1996, 32(1/2): 191-222.
[2]Miernyk J A. Protein folding in the plant cell. Plant Physiology, 1999, 121(3): 695-703.
[3]Mukhopadhyay I, Nazir A, Saxena D K, Chowdhuri D K. Heat shock response: hsp70 in environmental monitoring. Journal of Biochemical and Molecular Toxicology, 2003, 17(5): 249-254.
[4]Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics, 2008, 71(4): 391-411.
[5]Sun W, Van M M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta, 2002, 1577(1): 1-9.
[6]Carper S W, Duffy J J, Gerner E W. Heat shock protein in thermotolerance and other cellular processes. Cancer Research, 1987, 47(20): 5249-5255.
[7]Emelyanov V V. Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution. Gene, 2002, 299(1-2): 125-133.
[8]Pearl L H, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 2006, 75: 271-294.
[9]Terasawa K, Minami M, Minami Y. Constantly up-dated knowledge of Hsp90. The Journal of Biochemistry, 2005, 137(4): 443-447.
[10]Wegele H, Wandinger S K, Schmid A B, Reinstein J, Buchner J. Substrate transfer from the chaper-one Hsp70 to Hsp90. Journal of Molecular Biology, 2006, 356(3): 802-811.
[11]Milioni D, Hatzopoulos P. Genomic organization of hsp90 gene family in Arabidopsis. Plant Molecular Biology, 1997, 35: 955-961.
[12]Krishna P, Gloor G. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones, 2001, 6: 238-246.
[13]Chen B, Zhong D B, Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 2006, 7: 156.
[14]Yonehara M, Minami Y, Kawata Y, Nagai J, Yahara I. Heat-induced chaperone activity of HSP90. Journal of Biological Chemistry, 1996, 271(5): 2641-2645.
[15]Neuer A, Spandorfer S D, Giraldo P, Dieterle S, Rosenwaks Z, Witkin S S. The role of heat shock proteins in reproduction. European Society of Human Reproduction and Embryology, 2000, 6(2): 149-159.
[16]宫伟娜.低温胁迫过程中入侵植物紫茎泽兰热激蛋白基因的作用[D]. 北京: 中国农业科学院, 2009.
Gong W N. The effect of the heat shock protein genes of invasive alien weed Ageratina adenophora (compositae) under low temperature stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[17]高丽红, 尚庆茂, 马海艳. 两种不同耐热性菜豆品种在高温胁迫下叶绿素a 荧光参数的差异. 中国农学通报, 2004, 20(1): 173-176.
Gao L H, Shang Q M, Ma H Y. The difference of chlorophyll a fluorescence parameter in two common beans varieties with heat tolerance under high temperature stress. Chinese Agricultural Science Bulletin, 2004, 20(1): 173-176. (in Chinese)
[18]吴斌. 萝卜耐热性鉴定与热激蛋白基因克隆[D]. 南京农业大学, 2009.
Wu B. Identification of heat resistances and cloning of HSP gene in radish (Raphanus sativus L.) [D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[19]陈以博, 侯喜林, 陈晓峰. 不结球白菜幼苗耐热性机制初步研究. 南京农业大学学报, 2010, 33(1): 27-31.
Chen Y B, Hou X L, Chen X F. Studies on heat tolerance mechanism of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Journal of Nanjing Agricultural University, 2010, 33(1): 27-31. (in Chinese)
[20]周群初, 马艳青. 蔬菜耐热性研究现状及展望. 长江蔬菜, 2000(3): 1-4.
Zhou Y C, Ma Y Q. Progress and present research of heat resistance in vegetables. Journal of Changjiang Vegetables, 2000(3): 1-4. (in Chinese)
[21]胡俏强, 陈龙正, 张永吉, 徐海, 宋波, 苏小俊, 袁希汉. 普通白菜苗期耐热性鉴定方法研究. 中国蔬菜, 2011(2): 56-61.
Hu Q Q, Chen L Z, Zhang Y J, Xu B, Song B, Su X J, Yuan X H. Studies on heat tolerance identification method for non-heading Chinese cabbage [Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee]. Chinese Vegetables, 2011(2): 56-61. (in Chinese)
[22]吴韩英, 寿森炎, 朱祝军, 杨信廷. 高温胁迫对甜椒光合作用和叶绿素荧光的影响. 园艺学报, 2001, 28(6): 517-521.
Wu H Y, Shou S Y, Zhu Z J, Yang X T. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicumf ructescens L.). Acta Horticulturae Sinica, 2001, 28(6): 517-521. (in Chinese)
[23]Prodromou C, Roe S M, O'Brien R, Ladbury J E, Piper P W, Pearl L H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90(1): 65-75.
[24]Gupta R S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Molecular Biology and Evolution, 1995, 12(6): 1063-1073.
[25]Minami Y, Kimura Y, Kawasaki H, Suzuki K, YaharaI. The carboxy-teminal region of mammalian Hsp90 is required for its dimerization and function in vivo. Molecular and Cellular Biology, 1994, 14(2): 1459-1464.
[26]Zhao R M, Houry W A. Hsp90: a chaperone for protein folding and gene regulation. Biochemistry and Cell Biology, 2005, 83(6): 703-710.
[27]Song H M, Fan P X, Shi W L, Zhao R M, Li Y X. Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses. Journal of Plant Physiology, 2010, 167(14):1172-1178.
[28]Krebs R A, Holbrook S H. Reduced enzyme activity following Hsp70 overexpression in Drosophila melanogaster. Biochemical Genetics, 2001, 39(1/2): 73-82.
[29]Weng J, 周恒. 耐热与热敏感小麦品种对热冲击的不同反应. 麦类作物学报, 1993(2): 28-31.
Weng J, Zhou H. The different reactions of the heat-tolerant and heat-sensitive wheat varieties thermal shock. Journal of Triticeae Crops, 1993(2): 28-31. (in Chinese)
[30]周向红, 李信书, 王萍, 阎斌伦, 滕亚娟, 易乐飞. 条斑紫菜HSP90基因的克隆与表达分析. 水产学报, 2010, 34(12): 1844-1852.
Zhou X H, Li X S, Wang P, Yan B L, Teng Y J, Yi L F. Molecular cloning and expression analysis of HSP90 gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Journal of Fisheries of China, 2010, 34(12): 1844-1852. (in Chinese) |