[1]Parida A K, das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[2]FAO.2010. FAO stat.data,http://faostat.fao.org.
[3]Verma S K, Singh S K, Krishna H. The effect of certain rootstocks on the grape cultivar ‘Pusa Urvashi’(Vitis vinifera L.). International Journal of Fruit Science, 2010, 10(1): 16-28.
[4]Mehanna H, Fayed T, Rashedy A. Response of two grapevine rootstocks to some salt tolerance treatments under saline water conditions. Journal of Horticultural Science & Ornamental Plants, 2010, 2: 93-106.
[5]Tillett R, Ergul A, Albion R, Schlauch K, Cramer G, Cushman J. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape(Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC Plant Biology, 2011, 11(1): 86-96.
[6]Troncoso A, Matte C, Cantos M, Lavee S. Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis, 1999, 38(2): 55-60.
[7]Paranychianakis N, Angelakis A. The effect of water stress and rootstock on the development of leaf injuries in grapevines irrigated with saline effluent. Agricultural Water Management, 2008, 95(4): 375-382.
[8]Fisarakis I, Chartzoulakis K, Stavrakas D. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 2001, 51(1): 13-27.
[9]Walker R, Torokfalvy E, Scott n S, Kriedemann P. An analysis of photosynthetic response to salt treatment in Vitis vinifera. Functional Plant Biology, 1981, 8(3): 359-374.
[10]Hatami E, Esna-ashari M, Javadi T. Effect of salinity on some gas exchange characteristics of grape(Vitis vinifera) cultivars. International Journal of Agriculture and Biology, 2010, 12: 308-310.
[11]Ben-asher J, Tsuyuki I, Bravdo B A, Sagih M. Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agricultural Water Management, 2006, 83(1/2): 13-21.
[12]Bauls J, Primo-millo E. Effects of salinity on some citrus scion- rootstock combinations. Annals of Botany, 1995, 76(1): 97-102.
[13]Schmutz U, Ldders P. Effect of NaCl salinity on growth, leaf gas exchange, and mineral composition of grafted mango rootstocks (var.‘13-1’and ‘Turpentine’). Gartenbauwiss, 1999, 64(2): 60-64.
[14]高光林, 姜卫兵, 汪良驹, 韩浩章, 戴美松. 砧木对盐处理下“丰水”梨幼树光合特性的影响. 园艺学报, 2003. 30(3): 258-262.
Gao G L, Jiang W B, Wang L J, Han H Z, Dai M S. Effects of rootstocks on photosynthetic properties of young ‘Fengshui’ pear trees under salinity. Acta Horticulturae Sinica, 2003. 30(3): 258-262. (in Chinese)
[15]廖祥儒, 贺普超, 朱新产. 盐渍对葡萄光合色素含量的影响. 园艺学报, 1996, 3: 300-302.
Liao X R, He P C, Zhu X C. Effect of salt stress on the contents of photosynthetic pigments of grape leaf. Acta Horticulturae Sinica,1996, 3: 300-302. (in Chinese)
[16]Poljakoff-mayber A. Morphological and anatomical changes in plants as a response to salinity stress. Plants in Saline Environments- Ecological Studies, 1975, 15: 97-117.
[17]Carter D, Cheeseman J. The effects of external NaCl on thylakoid stacking in lettuce plants. Plant, Cell & Environment, 1993, 16(2): 215-222.
[18]Rascher U, Liebig M, Lttge U. Evaluation of instant light‐response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment, 2000, 23(12): 1397-1405.
[19]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)- General Subjects, 1989, 990(1): 87-92.
[20]Longstreth D J, Nobel P S. Salinity effects on leaf anatomy. Plant Physiology, 1979, 63(4): 700-703.
[21]Rahman M S, Matsumuro T, Miyake H, Takeoka Y. Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science-Tokyo-, 2000, 3(4): 422-429.
[22]Locy R D, Chang C C, Nielsen B L, Singh N K. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiology, 1996, 110(1): 321-328.
[23]孙龙华, 简令成. 逆境中沙冬青叶片细胞叶绿体的结构. 实验生物学报, 1995, 28(4): 427-429.
Sun L H, Jian L C.The special structure of chloroplasts in the leaf cells of Mongolian Ammopiptanthus under adverse circumstances. Acta Biologiae Experimentlis Sinica, 1995, 28(4): 427-429. (in Chinese)
[24]许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展. 应用与环境生物学报, 2000, 6(4): 379-387.
Xu M X, Ye H C, Li G F. Progress in research of plant tolerance to saline stress. Chinese Journal of Applied and Environmental Biology, 2000, 6(4): 379-387. (in Chinese)
[25]朱新广, 张其德. NaCl 对光合作用影响的研究进展. 植物学通报, 1999, 16(4): 332-338.
Zhu X G, Zhang Q D. Advances in the research on the effects of NaCl on photosynthesis. Chinese Bulletin of Botany, 1999, 16(4): 332-338. (in Chinese)
[26]Caemmerer S, Farquhar G. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 1981, 153(4): 376-387.
[27]Yamane K, Kawasaki M, Taniguchi M, Miyake H. Correlation between chloroplast ultra-structure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Production Science, 2008, 11(1): 139-145. |