中国农业科学 ›› 2026, Vol. 59 ›› Issue (2): 265-277.doi: 10.3864/j.issn.0578-1752.2026.02.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

外源硝普钠对碱胁迫下水稻幼苗糖代谢的影响

廖婷璐(), 石亚飞, 肖东浩, 舍杨梦斐, 郭富城, 杨九菊, 唐海江, 罗成科()   

  1. 宁夏大学农学院/宁夏优势特色作物现代分子育种重点实验室, 银川 750021
  • 收稿日期:2025-06-19 接受日期:2025-08-18 出版日期:2026-01-16 发布日期:2026-01-22
  • 通信作者:
    罗成科,E-mail:
  • 联系方式: 廖婷璐,E-mail:liaotl4433@163.com。
  • 基金资助:
    宁夏自然科学基金(2025AAC030188); 宁夏科技创新团队项目(2022BSB03109); 宁夏重点研发计划(2024BBF0100102)

The Effect of Exogenous Nitroprusside on Sugar Metabolism in Rice Seedlings Under Alkaline Stress

LIAO TingLu(), SHI YaFei, XIAO DongHao, SHE YangMengFei, GUO FuCheng, YANG JiuJu, TANG HaiJiang, LUO ChengKe()   

  1. College of Agriculture, Ningxia University/Key Laboratory of Modern Molecular Breeding of Advantageous Characteristic Crops in Ningxia, Yinchuan 750021
  • Received:2025-06-19 Accepted:2025-08-18 Published:2026-01-16 Online:2026-01-22

摘要:

【目的】 外源硝普钠(SNP)是一种常用的一氧化氮(NO)供体,在植物胁迫响应中具有重要的调控作用。探究外源SNP对碱胁迫下水稻幼苗糖代谢的影响,为揭示SNP增强水稻耐碱性的机制提供理论依据。【方法】 以幼苗期水稻中花11和宁粳52为供试材料,设置对照(CK)、CK+SNP(50 µmol·L-1)、碱胁迫(AS,将NaHCO3与Na2CO3等比例混合配制成20 mmol·L-1、pH 9.55的混合碱溶液)、AS+SNP(20 mmol·L-1 AS+50 µmol·L-1 SNP)4个处理,分析各处理对水稻幼苗期2个水稻品种糖代谢的影响。【结果】 与AS处理相比,AS+SNP处理显著提高了水稻幼苗的苗高、根长、鲜重及干重;AS+SNP处理上调了叶绿素合成酶相关基因OsChlHOsCAO1OsCAO2的表达,从而增加了叶绿素的含量,促进光合作用;同时,上调表达蔗糖转化酶基因OsNIN1使果糖和蔗糖含量降低,葡萄糖含量升高,有助于糖酵解和三羧酸的良性循环,促进苹果酸和柠檬酸的积累,从而维持能量平衡;此外,通过诱导蔗糖磷酸合酶OsSPS1、赤霉素合成酶相关基因(OsGA3ox2OsGA20ox1)、脯氨酸合成基因(OsP5CS)的表达,增加了赤霉素(GA)、脱落酸(ABA)、脯氨酸(Pro)和可溶性糖含量,并调节渗透胁迫和激素平衡,促进蔗糖从源向库的运输。【结论】 外源喷施SNP通过上调叶绿素合成基因,促进碱胁迫下水稻幼苗叶绿素积累并维持光合效率,进而增强葡萄糖合成;同时,通过激活糖酵解和三羧酸循环,使糖类分解产物向苹果酸、柠檬酸等转化,促进有机酸积累。此外,外源SNP通过渗透调节和GA/ABA激素平衡,促进蔗糖运输及糖代谢通路活化,保障能量代谢通量,进而提高了水稻幼苗对碱胁迫的耐受性。

关键词: NO, 碱胁迫, 糖代谢, 基因表达, 生理响应, 水稻

Abstract:

【Objective】 Sodium nitroprusside (SNP), as an exogenous nitric oxide (NO) donor, plays a critical regulatory role in plant stress responses. This study aimed to investigate the effects of exogenous SNP on sugar metabolism in rice seedlings under alkaline stress, for providing a theoretical basis for elucidating the mechanism of SNP enhancing rice alkali tolerance. 【Method】 Seedlings of rice cultivars Zhonghua 11 and Ningjing 52 were used as test materials. Four treatments were applied: control (CK), CK+SNP (50 µmol·L-1), alkaline stress (AS, a mixed alkaline solution containing NaHCO3 and Na2CO3 at a 1:1 ratio, pH 9.55, 20 mmol·L-1), and AS+SNP (20 mmol·L-1 AS+50 µmol·L-1 SNP). The effects of these treatments on sugar metabolism in the seedlings of the two rice cultivars were analyzed. 【Result】 Compared with AS treatment, AS+SNP treatment significantly increased rice seedling height, root length, fresh weight, and dry weight of rice seedlings. AS+SNP treatment upregulated the expression of chlorophyll synthase-related genes (OsChlH, OsCAO1, and OsCAO2), thereby increasing chlorophyll content and promoting photosynthesis. Concurrently, it upregulated the expression of the sucrose invertase gene OsNIN1, leading to decreased fructose and sucrose content but increased glucose content, which facilitated glycolysis and the tricarboxylic acid cycle, promoting the accumulation of malate and citrate to maintain energy balance. Additionally, SNP induced the expression of sucrose phosphate synthase OsSPS1, gibberellin synthase-related genes (OsGA3ox2, and OsGA20ox1), and proline synthesis gene (OsP5CS), increasing the levels of gibberellin (GA), abscisic acid (ABA), proline (Pro), and soluble sugar. This regulation helped maintain osmotic and hormonal balance and promoted sucrose transport from source to sink tissues. 【Conclusion】 Exogenous SNP application enhanced rice seedling tolerance to alkaline stress by upregulating chlorophyll biosynthesis genes, promoting chlorophyll accumulation, and sustaining photosynthetic efficiency, thereby facilitating glucose synthesis. Moreover, SNP activated glycolysis and the tricarboxylic acid cycle, directing sugar metabolites toward malate and citrate production, thus promoting organic acid accumulation. Additionally, exogenous SNP modulated osmotic regulation and GA/ABA hormonal balance, facilitating sucrose transport and sugar metabolic pathway activation, and ensuring efficient energy metabolism. These mechanisms collectively improved rice seedling resilience under alkaline stress.

Key words: NO, alkaline stress, sugar metabolism, gene expression, physiological response, rice