[1] |
ZENG D L, TIAN Z X, RAO Y C, DONG G J, YANG Y L, HUANG L C, LENG Y J, XU J, SUN C, ZHANG G H, HU J, ZHU L, GAO Z Y, HU X M, GUO L B, XIONG G S, WANG Y H, LI J Y, QIAN Q. Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3: 17031.
doi: 10.1038/nplants.2017.31
pmid: 28319055
|
[2] |
OKITA T W, HWANG Y S, HNILO J, KIM W T, ARYAN A P, LARSON R, KRISHNAN H B. Structure and expression of the rice glutelin multigene family. Journal of Biological Chemistry, 1989, 264(21): 12573-12581.
pmid: 2745459
|
[3] |
KAWAKATSU T, YAMAMOTO M P, HIROSE S, YANO M, TAKAIWA F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. Journal of Experimental Botany, 2008, 59(15): 4233-4245.
|
[4] |
MOCHIZUKI T, HARA S. Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure. Nihon Jinzo Gakkai Shi, 2000, 42(1): 24-29.
|
[5] |
万建民, 翟虎渠, 刘世家, 江铃, 杨世湖, 陈亮明, 王春明. 功能性专用水稻品种W3660的选育. 作物杂志, 2004(5): 58.
|
|
WAN J M, ZHAI H Q, LIU S J, JIANG L, YANG S H, CHEN L M, WANG C M. Breeding of functional special rice variety W3660. Crops, 2004(5): 58. (in Chinese)
|
[6] |
张云辉, 张所兵, 周金云亮, 林静, 汪迎节, 方先文. 水稻低谷蛋白创新种质的选育和鉴定. 植物遗传资源学报, 2015, 16(1): 158-162.
doi: 10.13430/j.cnki.jpgr.2015.01.024
|
|
ZHANG Y H, ZHANG S B, ZHOU J Y L, LIN J, WANG Y J, FANG X W. Enhancement and identification of new rice germplasms with low glutelin content. Journal of Plant Genetic Resources, 2015, 16(1): 158-162. (in Chinese)
doi: 10.13430/j.cnki.jpgr.2015.01.024
|
[7] |
KUSABA M, MIYAHARA K, IIDA S, FUKUOKA H, TAKANO T, SASSA H, NISHIMURA M, NISHIO T. Low glutelin content1: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. The Plant Cell, 2003, 15(6): 1455-1467.
|
[8] |
IIDA S, AMANO E, NISHIO T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theoretical and Applied Genetics, 1993, 87(3): 374-378.
|
[9] |
陈达刚, 周新桥, 刘传光, 李丽君, 李巨昌, 陈友订. 应用分子标记辅助选择培育籼型低谷蛋白水稻品系. 分子植物育种, 2016, 14(7): 1753-1758.
|
|
CHEN D G, ZHOU X Q, LIU C G, LI L J, LI J C, CHEN Y D. Breeding of indica rice lines with low glutelin content by molecular marker-assisted selection. Molecular Plant Breeding, 2016, 14(7): 1753-1758. (in Chinese)
|
[10] |
CHEN K L, WANG Y P, ZHANG R, ZHANG H W, GAO C X. CRISPR/cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70: 667-697.
doi: 10.1146/annurev-arplant-050718-100049
pmid: 30835493
|
[11] |
CHEN Z H, DU H X, TAO Y J, XU Y, WANG F Q, LI B, ZHU Q H, NIU H B, YANG J. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. Plant Science, 2022, 324: 111449.
|
[12] |
YANG Y H, SHEN Z Y, LI Y G, XU C D, XIA H, ZHUANG H, SUN S Y, GUO M, YAN C J. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. Journal of Integrative Plant Biology, 2022, 64(10): 1860-1865.
doi: 10.1111/jipb.13334
|
[13] |
KIRCHMAIER S, LUST K, WITTBRODT J. Generation of DNA constructs using the golden GATEway cloning method. Methods in Molecular Biology, 2017, 1472: 157-168.
doi: 10.1007/978-1-4939-6343-0_12
pmid: 27671939
|
[14] |
MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y R, XIE Y Y, SHEN R X, CHEN S F, WANG Z, CHEN Y L, GUO J X, CHEN L T, ZHAO X C, DONG Z C, LIU Y G. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
|
[15] |
MIAO J, GUO D S, ZHANG J Z, HUANG Q P, QIN G J, ZHANG X, WAN J M, GU H Y, QU L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 2013, 23(10): 1233-1236.
doi: 10.1038/cr.2013.123
pmid: 23999856
|
[16] |
周田田, 唐兆成, 李笑, 朱鹏, 邓晶晶, 杨郁文, 张保龙, 郭冬姝. 利用基因编辑技术创制低谷蛋白水稻种质. 作物学报, 2024, 50(10): 2435-2446.
doi: 10.3724/SP.J.1006.2024.32060
|
|
ZHOU T T, TANG Z C, LI X, ZHU P, DENG J J, YANG Y W, ZHANG B L, GUO D S. Development of low-glutelin rice germplasm by gene editing technology. Acta Agronomica Sinica, 2024, 50(10): 2435-2446. (in Chinese)
|
[17] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
|
[18] |
刘锐, 苗艺源, 黄家章, 郭孝萱, 张斌, 孙君茂. 营养功能型稻米产业研究进展与展望. 中国粮油学报, 2024, 39(6): 215-224.
|
|
LIU R, MIAO Y Y, HUANG J Z, GUO X X, ZHANG B, SUN J M. Research progress and prospect of functional rice industry. Journal of the Chinese Cereals and Oils Association, 2024, 39(6): 215-224. (in Chinese)
|
[19] |
刘行丹, 邱颖波, 刘红梅, 刘建丰. 功能性水稻研究进展. 农业科技通讯, 2013(3): 37-40.
|
|
LIU X D, QIU Y B, LIU H M, LIU J F. Research progress of functional rice. Bulletin of Agricultural Science and Technology, 2013(3): 37-40. (in Chinese)
|
[20] |
刘传光, 周新桥, 陈达刚, 郭洁, 陈平丽, 陈可, 李逸翔, 陈友订. 功能性水稻研究进展及前景展望. 广东农业科学, 2021, 48(10): 87-99.
|
|
LIU C G, ZHOU X Q, CHEN D G, GUO J, CHEN P L, CHEN K, LI Y X, CHEN Y D. Progress and prospect of functional rice research. Guangdong Agricultural Sciences, 2021, 48(10): 87-99. (in Chinese)
|
[21] |
陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系. 中国水稻科学, 2023, 37(1): 55-65.
doi: 10.16819/j.1001-7216.2023.220302
|
|
CHEN T, ZHAO Q Y, ZHU Z, ZHAO L, YAO S, ZHOU L H, ZHAO C F, ZHANG Y D, WANG C L. Development of new low glutelin content Japonica rice lines with good eating quality and fragrance by molecular marker-assisted selection. Chinese Journal of Rice Science, 2023, 37(1): 55-65. (in Chinese)
doi: 10.16819/j.1001-7216.2023.220302
|
[22] |
COLLABORATION G C K D. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet, 2020, 395(10225): 709-733.
|
[23] |
CHANDRA D, CHO K, PHAM H A, LEE J Y, HAN O. Down-regulation of rice glutelin by CRISPR-Cas9 gene editing decreases carbohydrate content and grain weight and modulates synthesis of seed storage proteins during seed maturation. International Journal of Molecular Sciences, 2023, 24(23): 16941.
|
[24] |
TAKEMOTO Y, COUGHLAN S J, OKITA T W, SATOH H, OGAWA M, KUMAMARU T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiology, 2002, 128(4): 1212-1222.
pmid: 11950970
|
[25] |
田孟祥, 何友勋, 赵龙, 张时龙, 余本勋, 叶永印. 应用分子标记辅助选育低谷蛋白水稻新品种. 农业科技通讯, 2021(10): 149-151.
|
|
TIAN M X, HE Y X, ZHAO L, ZHANG S L, YU B X, YE Y Y. Breeding of new rice varieties with low valley protein by molecular markers. Bulletin of Agricultural Science and Technology, 2021(10): 149-151. (in Chinese)
|
[26] |
WAKASA Y, KAWAKATSU T, ISHIMARU K, OZAWA K. Generation of major glutelin-deficient (GluA, GluB, and GluC) semi-dwarf Koshihikari rice line. Plant Cell Reports, 2024, 43(2): 51.
|
[27] |
LIU Q, WANG C, JIAO X Z, ZHANG H W, SONG L L, LI Y X, GAO C X, WANG K J. Hi-TOM: A platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019, 62(1): 1-7.
|
[28] |
HE W, WANG L, LIN Q L, YU F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. Journal of Integrative Plant Biology, 2021, 63(12): 1999-2019.
doi: 10.1111/jipb.13176
|
[29] |
KAWAKATSU T, HIROSE S, YASUDA H, TAKAIWA F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiology, 2010, 154(4): 1842-1854.
doi: 10.1104/pp.110.164343
pmid: 20940349
|
[30] |
MORITA R, KUSABA M, IIDA S, NISHIO T, NISHIMURA M. Development of PCR markers to detect the glb1 and Lgc1 mutations for the production of low easy-to-digest protein rice varieties. Theoretical and Applied Genetics, 2009, 119(1): 125-130.
doi: 10.1007/s00122-009-1022-5
pmid: 19373444
|
[31] |
ZHOU S R, YIN L L, XUE H W. Functional genomics based understanding of rice endosperm development. Current Opinion in Plant Biology, 2013, 16(2): 236-246.
|
[32] |
BISELLI C, BAGNARESI P, CAVALLUZZO D, URSO S, DESIDERIO F, ORASEN G, GIANINETTI A, RIGHETTINI F, GENNARO M, PERRINI R, BEN HASSEN M, SACCHI G A, CATTIVELLI L, VALÈ G. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics, 2015, 16: 1091.
doi: 10.1186/s12864-015-2321-7
pmid: 26689934
|
[33] |
TAKAHASHI K, KOHNO H, KANABAYASHI T, OKUDA M. Glutelin subtype-dependent protein localization in rice grain evidenced by immunodetection analyses. Plant Molecular Biology, 2019, 100(3): 231-246.
doi: 10.1007/s11103-019-00855-5
pmid: 30911876
|